MEASURE OF PLANES INTERSECTING
A CONVEX BODY

RAFIK ARAMYAN
Russian-Armenian (Slavonic) University,
Institute of Mathematics Armenian Academy of Sciences,
Bagramian 24b, Yerevan, ARMENIA
rafikaramyan@yahoo.com

In the present paper a representation for the measure of planes intersecting a convex body, using stochastic approximation of the body was found. The representation was found in terms of the normal curvatures of the surface of the body and a flag density of the measure.

Keywords: integral geometry; stochastic approximation; flag densities.

1. Introduction
Let \(E \) be the space of planes in \(\mathbb{R}^3 \). We consider locally finite signed measures \(\mu \) in the space \(E \), which possess densities with respect to the standard Euclidean motion invariant measure, i.e. (see. [2])

\[
\mu(de) = h(e) \, de.
\] (1)

Recall that an element \(de \) of the standard measure is written as \(de = dp \cdot d\xi \), where \((p, \xi)\) is the usual parametrization of a plane \(e \): \(p \) is the distance of \(e \) from the origin \(O \); \(\xi \in S^2 \) is the direction normal to \(e \). \(d\xi \) is an element of solid angle of the unit sphere \(S^2 \). Where appropriate we write \(h(e) = h(p, \xi) \).

The concept of a flag in \(\mathbb{R}^3 \) which naturally emerges in Combinatorial integral geometry will be of basic importance below. A detailed account of this concept is in [?]. We repeat the definition.

A flag is a triad \(f = (P, g, e) \), where \(P \) is a point in \(\mathbb{R}^3 \) called the location of \(f \), \(g \) is a line containing the point \(P \), and \(e \) is a plane containing \(g \). There are two equivalent representations of a flag:

\[
f = f(P, \Omega, \Phi) \text{ or } f = f(P, \omega, \varphi),
\]

where \(\Omega \) is the spatial direction of \(g \) in \(\mathbb{R}^3 \), \(\Phi \) is the rotation of \(e \) around \(g \), \(\omega \) is the normal of \(e \), and \(\varphi \) is the planar direction of \(g \) in \(e \). The range of \(\Omega \) and \(\omega \) is
\mathcal{E}_2, the standard elliptic 2–space which can be obtained from the unit sphere by identification of the antipodal points \([\phi])$, ϕ and φ belong to \mathcal{E}_1.

We introduce the following function in the space of flags (a flag function)

$$\rho(f) = \rho(P, \omega, \varphi) = \int_{\mathcal{E}_2} \cos^2(\varphi - \psi) h_{[P]}(\xi) \, d\xi.$$ \hspace{1cm} (2)

Here $[P]$ is the bundle of planes containing the point $P \in \mathbb{R}^3$, $h_{[P]}(\xi)$ is the restriction of h onto $[P]$, ψ is the direction of the projection of ξ into the plane of the flag f. The notation $h_{[P]}(\xi)$ is reasonable since ξ completely determines a plane from $[P]$. Clearly, the integral (2) does not depend on the choice of the reference point on the plane of the flag f. The function ρ defined on the space of flags \mathcal{F} we call flag density. The concept of a flag density was introduced and systematically employed by R. V. Ambartzumian (see [?,?], [?]).

Note, that in [?] (see also [?] and [?]) (2) was considered as an integral equation and by integral geometry methods was recovered h from a given ρ.

Let B be a convex body with sufficiently smooth boundary and with positive Gaussian curvature at every point of ∂B. By $[B]$ we denote the set of planes intersecting B. Let $s(\omega)$ be a point on ∂B whose outer normal is ω. By $k_1(\omega), k_2(\omega)$ we denote the principal normal curvatures of ∂B at $s(\omega)$ and let $k(\omega, \varphi)$ be the normal curvature in the direction φ at the point $s(\omega)$ of ∂B, φ is measured from the first principal direction.

The main result of the paper is the following.

Theorem 1.1. Let μ be a signed measure on \mathcal{E}, possessing a density $h(e)$. For any sufficiently smooth convex body B we have the following representation:

$$\mu([B]) = \frac{1}{2} \int_{S^2} \rho(s(\omega), \omega, \varphi) \frac{\sqrt{k_1(\omega)k_2(\omega)}}{k^2(\omega, \varphi)} \, d\varphi \, d\omega,$$ \hspace{1cm} (3)

where ρ is the flag density of μ defined by (2).

If $h(e) \equiv 1$ (the case of Euclidean motion invariant measure μ_{inv}) from (3) we obtain the Minkowski formula (see [?])

$$\mu_{\text{inv}}([B]) = \frac{1}{2} \int_{S^2} \left(\frac{1}{k_1(\omega)} + \frac{1}{k_2(\omega)} \right) \, d\omega.$$ \hspace{1cm} (4)

2. Preliminary Representations

In [?] R. V. Ambartzumian has indicated the existence of the so-called flag-representation for width functions of convex bodies in \mathbb{R}^3 using some ”standard” flag-representation for width functions of polyhedra.

Let $H(\xi)$ be the width function in direction ξ of a convex body B. Then (see [?])

$$H(\xi) = \int_{S^1 \times S^2} \sin^2 \alpha(\xi, \Omega, \Phi) \, m(d\Omega, d\Phi),$$ \hspace{1cm} (5)
where S^i is the unit sphere in \mathbb{R}^{i+1}, $i = 1, 2$, $\Omega, \xi \in S^2$, m is a measure in $S^1 \times S^2$, α is the angle between $\Omega \in S^2$ and the trace $e_\xi \cap e(\Omega, \Phi)$, e_ξ is a plane normal to ξ, and $e(\Omega, \Phi)$ is the plane of the so-called free flag $f = f(\Omega, \Phi)$ (one can consider that the location of a free flag is the origin of \mathbb{R}^3).

The representation (5) fails to be unique (there are many m for given H).

Note, that if μ is a translation invariant measure in E with the form $d\mu = dp \times \delta_\xi$, where δ_ξ is a delta measure concentrated on the direction ξ, then we have $H(\xi) = \mu([B])$.

Let $K \subset \mathbb{R}^3$ be a convex polyhedron and $e \in [K] \subset E$. We consider the intersection $e \cap K$ which is a bounded convex polygon whose vertices correspond to the edges of K actually hit by e. The fact, that the sum of outer angles of $e \cap K$ equals 2π we write in the form

$$\sum_i \alpha_i(e) I_{[L_i]}(e) = 2\pi I_K.$$

(6)

Here L_i is an edge of K, $\alpha_i(e)$ is the outer angle of $e \cap K$ correspond to vertex $e \cap L_i$, and summation is by all edges of K.

In [7], by integration of (6) with respect to $d\mu = dp \times m(d\xi)$ (a translation invariant measure) some "standard" flag-representation for the width function of a polyhedron K was found. In [8], using approximation by polyhedrons, a new representation for the width functions of convex bodies was obtained. In [7], using stochastic approximation (Voronoi’s approximation) of smooth convex bodies by polyhedrons, for translation invariant measures representation (3) was obtained.

Now we integrate (6) with respect to $\mu(de) = h(e)de$, where h is a continuous function defined on E. We have

$$2\pi \mu([K]) = \sum_i \int_{[L_i]} \alpha_i(e) h(e) de = \sum_i \int_{[L_i]} \alpha_i(e) h(p, \xi) dp \, d\xi$$

$$= \sum_i \int_{[L_i]} \alpha_i(e) h(x, \xi) | \cos(\xi, \Omega_i) | \, dx \, d\xi = \sum_i \int_{L_i} \int_{\mathcal{E}_2} \alpha_i(e) h(x, \xi) | \cos(\xi, \Omega_i) | \, d\xi \, dx.$$

(7)

Here ξ, Ω_i is the angle between ξ and Ω_i, where Ω_i is the direction of the edge L_i.

Also, here we use the following well known fact from integral geometry

$$de = dp \, d\xi = | \cos(\xi, \Omega_i) | \, dx \, d\xi,$$

(8)

where x is the intersection point $e \cap L_i$ and dx is one dimensional Lebesgue in L_i.

Using standard formulae of spherical trigonometry we get (see [7])

$$\alpha_i(e) | \cos(\xi, \Omega_i) | = \int_{A_i} \sin^2 \alpha(\xi, \Omega_i, \Phi) \, d\Phi,$$

(9)

where A_i is the exterior dihedral angle of the edge L_i (see also (5)). After substitution (9) into (7) we obtain

$$2\pi \mu([K]) = \sum_i \int_{L_i} \int_{A_i} \int_{\mathcal{E}_2} \sin^2 \alpha(\xi, \Omega_i, \Phi) h(x, \xi) d\xi \, d\Phi \, dx.$$

(10)
3. Stochastic Approximation

Let \(B \) be a sufficiently smooth (three times continuously differentiable) convex body in \(\mathbb{R}^3 \). We assume that the Gaussian curvature of \(\partial B \) is everywhere positive. Hence the Gauss map of \(\partial B \) onto the unit sphere \(S^2 \) is a homeomorphism.

We throw \(n \) independent points \(P_1, \ldots, P_n \) onto \(S^2 \) with the same distribution \(P \). Let \(dP = f(\omega)d\omega \), where \(f(\omega) > 0 \) is continuous, \(d\omega \) is an area element on \(S^2 \). On \(\partial B \) by \(P_1^*, \ldots, P_n^* \) we denote the images of the points \(P_1, \ldots, P_n \) by the inverse to the Gauss map. Denote by \(K_n(P_1^*, \ldots, P_n^*) \) the convex hull of the points \(P_1^*, \ldots, P_n^* \).

According to (10), \(\mu([K_n(P_1^*, \ldots, P_n^*)]) \) can be represented in the form

\[
2\pi \mu([K_n]) = \sum_{i<j}^{n} \int_{L_{ij}} \int_{A_{ij}} \int_{\mathcal{E}_2} \sin^2 \alpha(\xi, \Omega_{ij}, \Phi) h(x, \xi) d\xi d\Phi dx. \quad (11)
\]

Here \(\Omega_{ij} \) is the direction of \(P_1^*P_2^* \), \(L_{ij} \) is the edge \(P_i^*P_j^* \), \(A_{ij} \) is the exterior dihedral angle of the edge \(P_i^*P_j^* \), \(D \) is the set of all pairs \((i, j)\) corresponding to the edge. We average both sides of (11) with respect to the sequences \((P_1^*, \ldots, P_n^*) \). Since \(f(\omega) > 0 \), in the limit \((n \to \infty)\) in the left-hand side we obtain \(\mu([B]) \). By symmetry we have

\[
2\pi \mu([B]) = \lim_{n \to \infty} \left(\frac{n}{2} \right) \int_{(S^2)^2} \left[\int_{(S^2)^{n-2}} I_D(1, 2) \right. \\

\times \left. \int_{L_{12}} \int_{A_{12}} \int_{\mathcal{E}_2} \sin^2 \alpha(\xi, \Omega_{12}, \Phi) h(x, \xi) d\xi d\Phi dx \right] dP_3 \cdots dP_n dP_1 dP_2. \quad (12)
\]

Taking \(P_1 \) as the pole, \(P_2 \) can be described by spherical coordinates \((\nu, \varphi)\) with respect to \(P_1 \). Also, \(P_2 \) can be described by coordinates \((l, \varphi)\), where \(l = |P_1P_2| \). We have

\[
dP_2 = f(\omega) d\omega = f(\nu, \varphi) \sin \nu d\nu d\varphi = f(l, \varphi) l dl d\varphi. \quad (13)
\]

Let \(e(\Omega_{l\varphi}, \Phi) \) be the plane passing through \(P_1^*, P_2^* \) and rotated around \(\Omega_{l\varphi} = P_1^*P_2^* \) by angle \(\Phi \). For \(e(\Omega_{l\varphi}, 0) \) we take the plane that is perpendicular to the plane passing through \(\omega \) and \(\Omega_{l\varphi} \). By \(L^* \) we denote the segment \(P_1^*P_2^* \) and let \(l^* = |P_1^*P_2^*| \).

In this paper we consider the case of the uniform distribution, i.e. \(f(\omega) = (S_o C(\omega))^{-1}, \) where \(S_o \) is the total area of the surface of \(B \), \(C(\omega) \) is the Gaussian curvature at the point on \(\partial B \) with normal \(\omega \). The plane \(e(\Omega_{l\varphi}, \Phi) \) divides \(\partial B \) into two parts and by \(S(\Phi, l) \) we denote the area of the smaller part \(\partial B_1(\Phi, l) \).

Applying Fubini’s theorem in the inner integral of (12), we obtain

\[
2\pi \mu([B]) = \lim_{n \to \infty} \left(\frac{n}{2} \right) \int_{(S^2)^2} \left[\int_{L^*} \int_{\mathcal{E}_2} \alpha(\xi, \Omega_{l\varphi}, \Phi) h(x, \xi) d\xi dx \right] d\Phi \\

\times \left[\int_{L^*} \int_{\mathcal{E}_2} \sin^2 \alpha(\xi, \Omega_{l\varphi}, \Phi) h(x, \xi) d\xi dx \right] d\Phi \frac{l dl d\varphi d\omega}{S^2_o C(\omega) C(l, \varphi)}. \quad (14)
\]

The sum in the square brackets of (14) is the probability that segment \(P_1^*P_2^* \) is an edge and \(e(\Omega_{l\varphi}, \Phi) \) belongs to the exterior dihedral angle of the edge.
Since \(\frac{S(\Phi,l)}{S_o} \leq \frac{1}{2} \), we have

\[
\lim_{n \to \infty} \left(\frac{n}{2} \right) \int_{(S^2)^2} \left[\int_{-\hat{\Phi}}^{\hat{\Phi}} \left(\frac{S(\Phi,l)}{S_o} \right)^{n-2} \left[\int_{L^*} \int_{E_2} \sin^2(\xi, \Omega_{l\varphi}, \Phi) h(x, \xi) d\xi \ dx \right] d\Phi \right] \times \frac{l \ d\varphi \ d\omega}{S_o^2 C(\omega) C(l, \varphi)} \leq \lim_{n \to \infty} A \left(\frac{n}{2} \right) \left(\frac{1}{2} \right)^{n-2} = 0, \tag{15}\]

where \(A \) is a constant. In a similar manner one can prove that the domain of variation of \(\Phi \) and \(l \) can be taken arbitrarily small. Thus

\[
2\pi \mu([B]) = \lim_{n \to \infty} \left(\frac{n}{2} \right) \int_{(S^2)^2} \int_{0}^{2\pi} \int_{0}^{\phi_0} \left(1 - \frac{S(\Phi,l)}{S_o} \right)^{n-2} \int_{L^*} \int_{E_2} \sin^2(\xi, \Omega_{l\varphi}, \Phi) h(x, \xi) d\xi \ dx \ l \ d\Phi \ dl \ d\varphi \ d\omega \frac{d\varphi \ d\omega}{S_o^2 C(\omega) C(l, \varphi)}, \tag{16}\]

where \(l_0 \) and \(\phi_0 \) are arbitrarily small fixed numbers. From the regularity of the surface \(\partial B \) we obtain the Taylor expansion

\[
S(\Phi,l) = l S_0'(0,0) + \Phi S_{\Phi}'(0,0) + \frac{l^2}{2} S_{\Phi}'(0,0) + l \Phi S_{\Phi\Phi}'(0,0) + \frac{\Phi^2}{2} S_{\Phi\Phi}'(0,0) + R(\Phi,l), \tag{17}\]

where \(R(\Phi,l) = o(l^2 + \Phi^2) \). Here all functions continuously depend on \(l \) and \(\Phi \), as well as on \(\omega \) and \(\varphi \). Below, we will see, that \(S_0'(0,0) = S_{\Phi}'(0,0) = 0 \).

Using the mean value theorem we find

\[
\int_{L^*} \int_{E_2} \sin^2(\xi, \Omega_{l\varphi}, \Phi) h(x, \xi) d\xi \ dx = l^* \int_{E_2} \sin^2(\xi, \Omega_{l\varphi}, \Phi) h(x_0, \xi) d\xi, \tag{18}\]

where \(x_0 \) is a point from the segment \(L^* \) and \(l^* = |L^*| \).

After substitution (18) in (16) and a change of variables \(u = l \sqrt{n}, v = \Phi \sqrt{n} \) we get

\[
2\pi \mu([B]) = \lim_{n \to \infty} \left(\frac{n}{2} \right) \int_{(S^2)^2} \int_{0}^{2\pi} \int_{0}^{\phi_0} \left(1 - \frac{S(\Phi,l)}{S_o} \right)^{n-2} \int_{E_2} \sin^2(\xi, \Omega_{l\varphi}, \Phi) h(x_0, \xi) d\xi \ dx \ l \ d\Phi \ dl \ d\varphi \ d\omega \frac{d\varphi \ d\omega}{S_o^2 C(\omega)}, \tag{19}\]

where \(l^* = l \cdot b(\omega, \varphi) + o(l) \).

One can interchange the limit and the integration operations. Substitution (17) in (19) and making use of

\[
\int_{E_2} \sin^2(\xi, \Omega_{l\varphi}, \Phi) h(x_0, \xi) d\xi \to \int_{E_2} \sin^2(\alpha(\xi, \omega, \varphi_1) h_{[P^*(\omega)]}(\xi) d\xi \tag{20}\]

almost everywhere when \(n \to \infty \), where \(\alpha(\xi, \omega, \varphi_1) \) is the angle between the direction \(\varphi_1 \) in the plane \(e_\omega \) and the intersection of \(e_\xi \) with the plane \(e_\omega \), \([P^*(\omega)] \) is the
bundle of planes containing the point \(P^*(\omega) \in \partial B\) with normal \(\omega\), we obtain
\[
2\pi \mu([B]) = \int_{(S^2)} \int_0^{2\pi} \left[\int_0^\infty \int_{-\infty}^{\infty} \exp \left(-\frac{u^2}{2} S''_l(0,0) - uv S''_q(0,0) - \frac{v^2}{2} S''_{q\Phi}(0,0) \right) \right] \times u^2 \, du \, dv \left[\int_{\xi_1}^{\xi_2} \sin^2 \alpha(\xi, \omega, \varphi) h_{|P^*(\omega)|}(\xi) \, d\xi \right] \frac{b(\omega, \varphi)}{2C(\omega)} \, d\varphi \, d\omega, \tag{21}
\]
where \(b(\omega, \varphi) = \lim_{t \to 0} l_t^\gamma.\)

4. A Representation Obtained by Stochastic Approximation

It follows from (21) that the final representation for \(\mu([B])\) depends on values of \(S''_l(0,0), S''_q(0,0), S''_{q\Phi}(0,0)\) which are functions of \(\omega\) and \(\varphi\) (see (21)). It was proved in [7], that:
\[
S''_l(0,0), S''_q(0,0), S''_{q\Phi}(0,0) \text{ depend only on derivatives of at most order of two of the surface } \partial B \text{ at the point } P^* \text{ whose outer normal is } \omega.
\]
Hence the corresponding calculation we can do for the osculating paraboloid of \(\partial B\) at the point \(P^*(\omega)\) whose outer normal is \(\omega\). In [7] the following expressions for the derivatives in terms of the normal curvatures of \(\partial B\) at the point \(P^*(\omega)\) were found:
\[
\begin{align*}
S''_l(0,0) &= 0, \quad S''_q(0,0) = 0, \quad S''_{q\Phi}(0,0) = \frac{\pi \sqrt{k_1 k_2} r^2(\varphi)(k_3^2 \cos^2 \varphi + k_4^2 \sin^2 \varphi)}{2A^4}, \\
S''_{q\Phi}(0,0) &= \frac{\pi \sqrt{k_1 k_2} \sin 2\varphi(k_2 - k_1)}{2A^4}, \quad S''_{q\Phi}(0,0) = \frac{2\pi \sqrt{k_1 k_2} r(\varphi)}{A^2}, \tag{22}
\end{align*}
\]
where \(k_i, i = 1, 2\) are the main normal curvatures, \(r(\varphi) = k_1^{-1} \cos^2 \varphi + k_2^{-1} \sin^2 \varphi\) is the radius of the normal curvature in the direction \(\varphi\) at the point \(P^*(\omega)\) of \(\partial B\) and \(A = \sqrt{k_2^2 \cos^2 \varphi + k_3^2 \sin^2 \varphi}\). Also, in [7] was found that (see (21))
\[
b(\omega, \varphi) = \sqrt{\frac{\cos^2 \varphi}{k_1^2} + \frac{\sin^2 \varphi}{k_2^2}} \text{ and } \tan \varphi_1 = \tan \varphi \frac{k_1}{k_2}. \tag{23}
\]
Substituting (22) and (23) into (21) we get
\[
\mu([B]) = (2\pi^2)^{-1} \int_{(S^2)} \int_0^{2\pi} \left[\int_{\xi_1}^{\xi_2} \sin^2 \alpha(\xi, \omega, \varphi) h_{|P^*(\omega)|}(\xi) \, d\xi \right] \frac{\sqrt{k_1 k_2}}{k^2(\omega, \varphi)} \, d\varphi \, d\omega, \tag{24}
\]
where \(k(\omega, \varphi)\) is the normal curvature in the direction \(\varphi\) at the point \(P^*(\omega)\) of \(\partial B\). Taking into account that
\[
\sin^2 \alpha(\xi, \omega, \varphi) = \cos^2 (\varphi - \psi), \tag{25}
\]
where \(\psi\) is the direction of the projection of \(\xi\) into the plane with normal \(\omega\), we get (3).

Theorem 1 is proved.

I would like to express my gratitude to Prof. R. V. Ambartzumian for helpful discussions.
References

