
International Journal of Computer Science and Applications,
©Technomathematics Research Foundation
Vol. 6, No. 5, pp 175 -202 , 2009

175

A PATTERN-BASED METHOD FOR BUILDING REQUIREMENTS
DOCUMENTS IN CALL-FOR-TENDER PROCESSES

SAMUEL RENAULT

CITI, CRP Henry Tudor,
Luxembourg, Luxembourg
samuel.renault@tudor.lu

ÓSCAR MÉNDEZ-BONILLA

CINVESTAV, Instituto Politécnico Nacional,
México D.F., México

oscar@math.cinvestav.mx

XAVIER FRANCH

GESSI Research Group, UPC,
Barcelona, Spain

franch@lsi.upc.edu
http://www.lsi.upc.edu/~franch

CARME QUER

GESSI Research Group, UPC,
Barcelona, Spain

cquer@lsi.upc.edu
http://www.lsi.upc.edu/~cquer

Requirements Elicitation is one of the activities held during the Requirements Engineering stage. Its
main goal is to discover the requirements that stakeholders demand on a system-to-be. There are
many strategies to conduct this activity, whose success depends on their effectiveness and efficiency
in their context of application. This paper presents our PABRE method for conducting the
Requirements Elicitation activity. PABRE is built upon a Requirement Patterns Catalogue and its
context of application is Off-The-Shelf selection projects driven by call-for-tender processes. The
PABRE process selects patterns from the catalogue that apply to the particular selection project, and
converts them into the real requirements that finally configure the project Requirements Document.
We show some benefits of the pattern approach for requirements engineers and IT consultants, as
well as for customers. Finally we discuss the strengths and weaknesses of the proposal and identify
some future work.
Keywords: Requirements engineering; Requirements reuse; Off-The-Shelf component selection;
Requirement patterns; Requirement document; Call-for-tender process.

1. Introduction

Nowadays, IT companies are increasingly adopting Off-The-Shelf (OTS) based
technologies to build their Information Systems (IS) [Li et al. (2008)], because this kind

Samuel Renault, Oscar Méndez, Xavier Franch, Carme Quer

176

of software, including both Commercial components and Open Source Software, offers a
wide scope of functionalities to support business processes.

In the last fifteen years, many methods for selecting OTS components have been
proposed (see [Mohamed et al. (2007)] for a recent survey). However, as reported in
several empirical studies (e.g., [Torchiano and Morisio (2004)][Li et al. (2006)]), these
methods are hardly adopted by industry because they propose some techniques and
artefacts that either are too complex or exceed the usual resources that companies may
invest in OTS selection. Consequently, companies tend to develop their own lightweight
selection methods.

Among them, the CITI department of the Public Research Centre Henri Tudor
(CPRHT, Luxembourg) has developed a pragmatic approach to select OTS-based
solutions for Small- and Medium-sized Enterprises (SME) [Krystkowiak and Bucciarelli
(2003)][Krystkowiak et al. (2004)], see Fig. 1. It has been designed to operate in
organisations that have no knowledge about Requirements Engineering (RE), and where
an external body, usually an Information Technology (IT) consultant, performs the
requirements analysis on behalf of this organisation. This approach is based on:
• The joint elicitation of requirements with the customer. The IT consultant conducts

the elicitation activity, using his/her skills to extract the requirements that apply to
the selection project (see (1) in Fig. 1).

• The design of a Requirements Book (2). The requirements that the IT consultant
captures from the customer are structured into a technical document, the
requirements book.

• The pre-selection of OTS components based on preliminary functional requirements
and availability of local providers able to implement the components.

• The use of the requirements book to conduct a Call-For-Tender process. In a call-for-
tender process [Lauesen and Vium (2004)], a question for each requirement in the
requirements book is raised. Software and service providers present their bids (3) by
answering these questions, stating how their IT solutions achieve the requirements.
The answers have to be matched with the requirements book during an evaluation
process (4). As a result, an acquisition agreement (5) is written between the customer
and the selected supplier (6).

• Final deployment of the OTS-based solution (7) by the selected supplier.
With more than forty projects performed according to this methodology since 2001, the
problematic of knowledge capitalisation (i.e., how to transfer knowledge from one project
to the next ones) arose at CITI. The first strategy to share knowledge according to
experiences of IT consultants was simply to duplicate requirements from former projects
as a starting basis for new requirements books. However, this kind of knowledge reuse
demonstrated soon its limitations since former requirements were not standardised and
were highly dependant on the context of their project and on the engineers that created
them. In addition, IT consultants wanting to use this knowledge needed to be aware of all
the former requirements books so as to select the ones that were closer to the current
project. We concluded that some more powerful conceptual support to the knowledge
capitalisation problem was needed.

A pattern-based method for building requirements documents in call-for-tender processes

177

Call for tendersRequirements Elicitation

IT ConsultantIT Consultant

Needs

CustomerCustomer

Requirements

Knowledge of
previous projects

SupplierSupplier

Bid

SupplierSupplierSupplierSupplier

Requirements
Book

Evaluation

OTS-based
Solution

Acquisition
Agreement

Bid Bid

1 2

3

4

5

7

6

Fig 1. Current call-for-tender process for OTS-based solution selection defined by the CITI - CPRHT

At this point, the notion of pattern [Alexander (1979)] was considered. Patterns have
been successfully used in different facets of Software Engineering. Their applicability to
the call-for-tender situation seems clear, since requirements that appear over and over in
requirements books could be identified as the solution to particular problems in a given
context (the classical context-problem-solution scenario of patterns). Therefore, we
adopted the notion of Requirement Pattern as the central artifact for requirements reuse.

In this paper we explore the use of a catalogue of requirement patterns as a way to
support requirements elicitation by IT consultants (acting as requirement engineers)
working with a customer (either the final user or user’s representative of the system-to-
be). The resulting requirements book is then used as a basis for performing a call-for-
tender process, to select the OTS-based solution.

The research undertaken has evolved through the following phases (see Fig. 2):
(1) Consolidation of the existing requirement books: we started our work with a

sample of 7 requirement books built for the domains of Content and Document
Management Systems. These books contained about 70 non-functional requirements in
average (although it is worth to remark that some requirements were not atomic). We
aligned these requirements in a very simple way, using a spreadsheet, placing in the same
row those requirements that were similar (some requirements appeared at more than one
row).

Samuel Renault, Oscar Méndez, Xavier Franch, Carme Quer

178

Requirement Patterns
CatalogueConsolidation

Analysis

Pattern
structure

AL: Set(AlertType), AL ≠ Ø
AlertType = Nominal(e-mail, …)
FL: …Parameter

Parameter

An alert of one of the types AL shall be gi-
ven for a failure of some of the types FL

Extension
text

Extension Specific Dependence

The system shall trigger alerts of a certain
type depending on the type of failure

Fixed part
text

Other metadata…

Specific Dependence: may (usually will) be
applied more than once; different AL’s
should not overlap

Comments
…see paperDescription

Require-
ment Form

Alert Types
Dependent
on Failure

Types AL: Set(AlertType), AL ≠ Ø
AlertType = Nominal(e-mail, …)
FL: …Parameter

Parameter

An alert of one of the types AL shall be gi-
ven for a failure of some of the types FL

Extension
text

Extension Specific Dependence

The system shall trigger alerts of a certain
type depending on the type of failure

Fixed part
text

Other metadata…

Specific Dependence: may (usually will) be
applied more than once; different AL’s
should not overlap

Comments
…see paperDescription

Require-
ment Form

Alert Types
Dependent
on Failure

Types

Fig 2. Research method of this work

(2) Analysis of the non-functional requirements: we examined the contents of the
spreadsheet as a whole, aiming at finding the fundamental concepts of the analyzed
books. Fundamental properties of requirements were also targeted in the search of criteria
for designing the structure of the pattern.

(3) Definition of pattern structure: we articulated the properties found in form of a
metamodel. Different parts of a pattern were identified and their relationships (causality,
optionality, etc.) established. From this metamodel, we designed a template including
useful management metadata.

(4) Construction of the catalogue: it embraced two different subphases:
(4.1) We built the first version of the catalogue using the pattern structure, the

spreadsheets with the analyzed requirement books, literature review, and
expert judgment. Also a preliminary case study was conducted as validation of
this first catalogue. The resulting version was constituted by 48 non-functional
requirement patterns. The experience is reported in [Renault et al. (2009)].

(4.2) We elaborated further the catalogue with exhaustive expert judgement and
analysis of the catalogue from different perspectives. Basically, we eliminated
redundancies, some patterns whose existence was not clearly justified, and
were leaned to merge some patterns to create new, more structured ones. We
executed a second case study for validation. As a result, the catalogue evolved
to its current form that contains 29 patterns.

The rest of the paper is organized as follows. After providing the necessary
background for discussion (Section 2), we will introduce our notion of requirements
pattern and outline the catalogue construction process (Section 3). Then, we will present
the Pattern-Based Requirements Elicitation method (PABRE) (Section 4) and describe
the validation done up to now (Section 5). Finally, we will provide some analysis of the
method (Section 6) and present the conclusions and future work (Section 7).

A pattern-based method for building requirements documents in call-for-tender processes

179

2. Antecedents

2.1. OTS Components and OTS-based Solutions

Off-The-Shelf (OTS) components can be categorized into commercial OTS (COTS)
components, and Open Source Software (OSS) components. A COTS component is an
external, contracted or licensed, software product [Carney and Leng (2000)], a software
subsystem block, which can be used as described in [Galster et al. (2007)], where the
source code is controlled by the vendor or provider [Basili and Boehm (2001)]. An OSS
component is an external, licensed software product, released by a community of
developers, which can be used as described in [Galster et al. (2007)], where the source
code is controlled by the community of developers and it is open to changes and
customizations [Madanmohan and Rahul (2004)].

Both types of OTS components may be a system or a subsystem by themselves, and
can be coarse- or fine-grained, depending on what they were developed for. Usually the
interaction with these components is through an application programming interface (API)
or through user interfaces, and normally their life cycle is controlled by the owner (public
or private, closed or open). In the case of COTS components there is a charge for their
use, against the no-charge-at-all for the OSS products (not considering costs for
installation, configuration, tuning, customization and maintenance, which are costs that
exist in both kinds of components). In the case of COTS components it is usually not
possible to access their source code, so, their life cycle is completely controlled by the
owner. Instead, OSS components allow accessing and using the source code; then, it is
possible to develop a customized version of the component, or participate in the life cycle
and development with the original community of developers.

Construction of OTS-based solutions requires some dedicated activities that are
different from those appearing in traditional software development. Among them, we
mention: selection of OTS components from the marketplace; integration of the selected
OTS components into the system; maintenance of the system including the periodical
updating of OTS components versions; OTS components dedicated quality assessments.
Due to the focus of this paper, we are particularly interested in OTS-based solutions
selection projects conducted by call-for-tender processes.

OTS selection methods started to be proposed in mid-90s [Kontio (1996)][Maiden
and Ncube (1998)] and still nowadays, new methods are formulated (see [Mohamed et al.
(2007)] for a survey). In spite of their differences, all of them share some common
principles. Among them, we remark the need to overlap the evaluation of components
and the elicitation of requirements. In Fig. 3(a) we show the evolution on time of elicited
requirements and candidate components (based on [Maiden and Ncube (1998)]).
Precisely, the mentioned overlapping between component evaluation and requirement
elicitation cannot be applied in the particular case of selection projects for public
organizations conducted by call-for-tender processes. In this kind of OTS selection
projects, which are usually imposed by legal regulations in public administrations, a
document containing the conditions of selection (that we call in this paper Requirements

Samuel Renault, Oscar Méndez, Xavier Franch, Carme Quer

180

Book) must be made public to initiate the selection process. Next, interested suppliers
send their biddings according to the needs expressed in the requirements book.
Evaluation rules are also determined in this book. Selection of candidates, therefore, is
carried out once all requirements have been elicited (see Fig. 3(b)). As a consequence, the
requirements elicitation activity is required to produce a requirement book of very high
quality, since once it is made public, it is difficult to change due to legal regulations. Note
that for private companies using a call-for-tenders procedure for the selection of their
software, there might be a small overlap between products evaluation and requirements
elicitation.

products

under
consideration

acquired
requirements

products
under

consideration

acquired
requirements

(a)

products
under

consideration

acquired
requirements

products
under

consideration

acquired
requirements

(b)

Fig 3. (a) Interleaving of requirements and OTS candidates evaluation in classical OTS selection processes;

(b) Strict sequencing of requirements and OTS candidates evaluation in call-for-tender processes.

2.2. Requirements Elicitation and Requirements Reuse

Requirements Elicitation is one of the activities that take place during requirements
engineering [Sommerville (2005)], consisting on the gathering of requirements from the
stakeholders. Requirements elicitation plays a crucial role in traditional software
development, because the definition and construction of requirements is the basis of the
requirements specification, upon which is based the subsequent design and construction
of the IS, including its software-intensive section. In the particular case of OTS-based
software development, as highlighted in the previous subsection, the activity is utterly
important in the case of call-for-tender processes.

Throughout the years, the techniques for requirements elicitation have evolved (see
[Cheng and Atlee (2007)] for a timely state of the art). These techniques are different
depending on the type of development or software construction that is carried out. The
development of component-based software has its own techniques and methods for
requirements elicitation. One of the characteristics of component-based IS construction is
efficiency, so that all activities of this type of development should be fast, including the
software requirements elicitation. It is necessary to have a method to conduct the

A pattern-based method for building requirements documents in call-for-tender processes

181

requirements elicitation in the shortest time possible and the most reliable way. Another
characteristic of component-based development is reuse, so that all the techniques and
methods that constitute this type of development should contribute to the reuse of
components and knowledge, including techniques for gathering requirements.

As part of this reuse need, Requirements Reuse has been subject of research [Lam et
al. (1997)][Cybulski and Reed (2000)]. This trend is oriented to use knowledge of prior
experiences in requirements elicitation, and this drives to knowledge reuse. Recent
proposals of requirements reuse focus on the concept of feature model that stems from
product line engineering (e.g., [Pohl et al. (2005)], see [Cheng and Atlee (2007)] for more
references). However, we have opted for the concept of Requirement Pattern.

In software engineering, the use of the pattern concept was made popular in the
design phase through design patterns [Gamma et al. (1995)] that in fact are, at least in
their origins, inspired by the concepts of pattern and pattern language, issued by the
architect Alexander and his team [Alexander (1979)]. This concept is about the re-use of
knowledge, more precisely, solutions to common and repetitive problems that appear in a
particular context, where solutions can be applied over and over to this kind of problems.
Some authors have proposed the concept of requirement pattern, either in general
[Robertson (1996)][Duran et al. (1999)][Withall (2008)] or in particular contexts like
embedded systems [Konrad and Cheng (2002)] or security requirements [25]. Other
criterion for classifying approaches is the formalism used to express the requirements:
plain natural language [Duran et al. (1999)][Withall (2008)], textual-based artifacts like
use cases [Robertson (1996)], object models [Fowler (1997)][Moros et al. (2008)], or
formal artifacts like logic-based [Konrad and Cheng (2002)].

Using patterns, a requirements book may be constructed by identifying which patterns
apply in the call-for-tender project and adapting them to the specificities of the system
being procured. The knowledge embraced by requirement patterns comes from post-
mortem analysis of requirement specifications, from modeling and analysis of domains in
software areas, and from specialized documentation from those areas.

3. Structure of the Pattern Catalogue

As mentioned in the introduction, the goal of the paper is defining the PABRE method
for building requirement books with the use of a requirement patterns catalogue. In this
section we focus on the patterns from a dual point of view. On the one hand, we first
describe the structure that the method imposes on the patterns and the catalogue, which is
based on [Mendez et al. (2008)]. On the other hand, we outline the process followed to
obtain the current contents of the catalogue. At this respect, we remark that describing the
concrete contents of the catalogue (i.e., the patterns stored therein) is not an objective of
the paper since the method is mostly content-independent.

It is important before introducing the structure of the patterns and the catalogue, to
have a sample of the type of requirements that CITI finds in their projects. Table 1 shows
four examples.

Samuel Renault, Oscar Méndez, Xavier Franch, Carme Quer

182

Table 1. Examples of requirements found in CITI projects.

[For a Document Management System.] An easy-to-use mechanism shall allow binding
a publication to an event. The pre-publishing actions (control, validation, etc.) will be
identified for each type of workflow.

The system must be available 22 hours per day and 7 days per week. The system
should not stop more than 1 hour per working day. The solution’s availability rate
should be 98% minimum.

The solution should permit to trace all the user actions. The data to trace are: user
name, date, accessed or modified data.

The solution should have a graphical interface for all the functionalities presented. A
Web interface for external access is also necessary

3.1. Structure

The template that we use for requirements patterns is shown in Fig. 4 filled with a
particular example, the Failure Alerts pattern.

3.1.1. Pattern metadata

The first set of attributes defines the metadata about the pattern itself: the name of the
pattern; its description; its author; comments included by its author and its users; its goal;
the sources from where it was obtained (e.g., the requirement books and projects from
which it was identified and included in the repository); and some keywords to facilitate
searches in the repository. We highlight the important role that the goal attribute plays
since it will help to decide whether the pattern is applicable to the project at hand (see
Section 4): a pattern will be applied in a call-for-tender process if the customer needs to
achieve its goal. In the case of the Failure Alerts pattern, the stated goal is that the users
of the OTS-based solution want to be alerted when some failure occurs. In other words,
the goal plays the role of the “problem” part of the pattern, whilst the “solution” is
encapsulated in the pattern forms.

3.1.2. Pattern forms

A requirement pattern, when used in different projects to achieve the same goal, may be
written differently, thus the template allows declaring several forms in a pattern.
Normally the number of different forms in a pattern will be very low. For instance, the
Failure Alerts pattern has two forms that differ on the granularity of information needed:
if the customer needs some specific types of alerts when some specific types of failures
occur (Alert Types Dependent on Failure Types form) or not (Failure Alerts Provided).
Each form has some metadata similar to the one of the pattern, so we have as attributes:
the name of the pattern form; its description; its author; comments included by its author
and its users; its version or data in which it has been changed for the last time; and the

A pattern-based method for building requirements documents in call-for-tender processes

183

sources from where it was obtained*. Finally, every form has exactly one fixed part and
may have extensions.

3.1.3. Fixed Part

Fixed parts of a form are usually quite abstract: the inclusion in a requirements book of a
requirement obtained from the application of a fixed part, states that the procured system
has to achieve the goal of the requirement pattern, but it does not state how this goal is
achieved. In case of Failure Alerts Provided form, the fixed part states that failures will
be informed by means of alerts.

3.1.4. Extensions

Since the fixed part of a form is abstract, it is usual to know some extra-information or
constraints about how to achieve the goal of the requirement pattern. Form extensions
(“extended part” in the template) allow stating this information. Extensions may be
defined either by rewriting the fixed part or by restricting it. In case of the Failure Alerts
Provided form, we define extensions that establish the type of alerts that are required by
the customer, and the type of failures that need to be informed of. The use of extensions,
therefore, allows including more detailed information in the requirements book when
applying the pattern.

3.1.5. Form text

Every fixed and extended part of a pattern is specified by a form text. This text is
expressed as a short sentence written in natural language that may include one or more
parameters that indicate those parts that may vary in different projects. In the case of the
Failure Alerts pattern, we have parameters in the extended parts of the forms. When a
pattern is selected and a form applied, the parameters that appear in the text will be
substituted by values. In order to define the valid values that a parameter may take, each
parameter will be bound to a metric and optionally will also have a correctness condition.
Metrics may be enumerated values (e.g., names of middleware platforms), integer (e.g.,
for stating number of connections supported), real numbers (e.g., for measuring response
time) and Boolean values (e.g., for knowing if some protocol is supported). In our
example, the parameter in the first extended part of the Failure Alerts Provided form, will
take as values the (non-empty) set of types of alerts that the customer whishes that the
solution provides.

* Tool support may allow inhering metadata from the pattern to the forms whenever needed, e.g. author and
sources of Failure Alerts Provided could be easily created by default inheriting from the pattern.

Samuel Renault, Oscar Méndez, Xavier Franch, Carme Quer

184

Description This pattern expresses the need of a software solution for having the capability to
inform its users about failures

Comments The alert is supposed to be issued at the moment the failure occurs.

Pattern goal Alert the users about failures

Author Oscar Mendez-Bonilla

Sources (0..*) • Requirement books from CITI: CITIxxx-aa, CITIyyy-bb
• Specialized literature: Pressman chap. 15, …

Keywords (0..*) Alert, Failure, Crash

Requirement
Pattern
Failure Alerts

Dependencies (0..*) IMPLIES: Failure Reports

Description This form does not establish any relationship among the types of alert and failure.

Comments Each extension may be applied just once

Version Wed, 26/11/2008 - 2:25am

Author Oscar Mendez-Bonilla

Sources (0..*) Same as above

Form Text The solution shall give an alert in case of failure
Fixed Part

Question Text Can your solution give an alert in case of failure?

Form Text Alerts provided by the solution shall be: AL

Question Text Can the alerts provided by the solution be: AL?
Parameter Metric

Extended
Part
Alert Types

AL: is a non-empty set of
alert types

AL: Set(AlertType)
AlertType: {E-mail, SMS, Page, Fax, Skype, IM, ...}

Form Text Failures to be alerted of shall be: FL

Question Text Can the failures to be alerted be: FL?
Parameter Metric

Requirement
Form
Failure Alerts
Provided

Extended
Part
Failure Types Requirement

Form
Failure Alerts Provided

FL: Set(FailureType)
FailureType: {Server Crash, Network Crash, ...}

Description This form establishes a dependency among the types of alert and of failure that occurs.

Comments The extensions may be applied more than once

Version Wed, 26/11/2008 - 2:45am

Author Carme Quer

Sources (0..*) Same as above

Form Text The solution shall give alerts of a certain type
depending on the type of failure

Fixed Part
Question Text Can your solution give alerts of a certain type

depending on the type of failure?

Form Text An alert of one of the types AL shall be provided for a
failure of some one of the types FL

Question Text Can your solution give alerts of one of the types AL
for a failure of some of the types FL?

Parameter Metric
AL: is a non-empty set of
alert types

AL: Set(AlertType)
AlertType: {E-mail, SMS, Page, Fax, Skype, IM, ...}

Requirement
Form
Alert Types
Dependent on
Failure Types

Extended Part
Specific Dependence

FL: is a non-empty set of
failure types

FL: Set(FailureType)
FailureType: {Server Crash, Network Crash, ...}

Fig. 4. Template and requirements pattern example

A pattern-based method for building requirements documents in call-for-tender processes

185

3.1.6. Question text

Also, each fix or extended part has associated a question text. The question text
corresponds to a rewriting of the form text of the part in an interrogative style and will be
used in case of selecting a requirement pattern part for being considered during the call-
for-tender process. From the point of view of the structure of the question, it must be a
natural language interrogative sentence that must include the same parameters than its
corresponding form. For example, in the case of the extended part Specific Dependence
the question text includes the same two parameters of the form text of this extended part.

3.1.7. Dependencies

Requirements patterns do not live isolated; they may be interrelated in the catalogue. We
have identified two types of dependencies, among requirement patterns and among
parameters. Dependencies among requirement patterns generalize the well-known idea of
having dependencies among requirements [Egyed and Grünbacher (2004)][ISO/IEC
Standard 9126-1]. These dependencies may be used during the elicitation process (e.g., to
help determining the application order) and also they may be propagated to the
requirements specification to improve traceability, e.g, if the requirements pattern
catalogue has reported that the achievement of a requirement influences on the
achievement of another one.

On the other hand, dependencies among parameters may help simplifying the process
and enforcing the correctness of the resulting requirements books, since they will declare
relationships among the values of different parameters that must be fulfilled. For
example, given a requirement pattern “The users’ manual shall be written in <name-of-
manual-language>” and “The help-desk service shall give assistance in <name-of-
desktop-language>”, being both parameters declared of type OfficialLanguage
(enumerated metrics with values {English, Spanish, …}), the relationship may state as
default value of the second parameter the same language for the first one chosen.

3.1.8. Classification schemas

To facilitate their comprehension and reuse during the elicitation process, the patterns in
the catalogue need to be indexed following some hierarchical classification schema.
Currently we have two of these hierarchies introduced in the repository, which are the
ISO 9126-1 catalogue [Robertson and Robertson (1999)] and a classification schema,
based on the Volere approach [32] and on empirical experiments of CITI, but we could
add other schemas (see Fig. 5). The reason of having several classification schemas is for
improving both the usability and portability of the repository: usability, because the same
catalogue may be used with different classification schemas by the same requirements
engineer; portability, because different requirements engineers, used to other standards or
even their own, customized classification schemas, may view the requirements patterns
catalogue with their own perspective.

Samuel Renault, Oscar Méndez, Xavier Franch, Carme Quer

186

- Req Pattern 1
- Req Pattern 2
.
- Req Pattern i
.
- Req Pattern x

ISO/IEC
9126-1
Classification
Schema

CRPHT
Classification
Schema

Other
Classification
Schema Reqt. Pattern Catalogue

Fig. 5. Organization of the Requirements Patterns Catalogue: Patterns, Dependencies and Classification

Schemas

3.2. Construction of the Requirement Pattern Catalogue

Reflecting the typical distinction among functional and non-functional requirements, we
have built a pattern catalogue that is composed of functional and non-functional
requirements patterns. Non-functional patterns are mainly domain-independent, whilst
functional patterns depend on the domain. In this first stage, we have focused on (1) non-
functional patterns, and (2) functional patterns for the particular software domain of ERP
systems, and more specifically for the Sales module of ERP systems. At the moment of
writing this paper, the non-functional part is more stable than the functional one, thus our
comments are applicable just for this type of patterns.

We have obtained this first version of the non-functional part of the patterns catalogue
from the analysis of 7 requirements books coming from projects driven by the CITI. We
used a generalization process to obtain each requirement pattern: when several
requirements were identified in different requirement books intending to state the same
(or very similar) goal in the resulting software system, we defined a requirement pattern.
The final definition of this first version of the patterns catalogue was decided taking into
account not just the requirements books, but also the description of the specific approach
used for the elicitation of requirements, literature review about the particular type of
requirement addressed by the pattern, and expert judgment from requirement engineers of
the CITI.

It is worth to remark that we do not aim at defining a closed catalogue, but an
evolving one, that will take profit of the information obtained from the use of the patterns
in industrial projects. This will facilitate the inclusion of new patterns, the evolution of
others (especially adding new forms and extensions when needed), and the elimination of
those patterns that finally become useless. A good example of this fact has been
introduced in the research methodology as presented in the first section of the paper,
where the current catalogue has been obtained as an evolution of the former one.

A pattern-based method for building requirements documents in call-for-tender processes

187

4. PABRE: A Method for Pattern-Based Requirements Elicitation

In this section we present the method that explores the requirement pattern catalogue to
produce a requirements book to be used in call for tender processes.

4.1. Assumptions

We have designed a method to apply to patterns from the catalogue in order to extract
requirements based on those patterns. The requirements are collected in the requirements
book. Although it is expected that most of the requirements will come directly from the
instantiation of the patterns, other situations may occur: (1) a pattern has to be slightly
modified when becoming a requirement, probably because some forms or extension of
the pattern is missing; (2) some requirement cannot be created as a pattern instantiation,
either because the requirement is very specific of the project, or because the catalogue is
still not complete enough.

Requirements elicitation becomes a process of search in, and pick-up from, the
requirement patterns catalogue. Eventually, this process could be basically executed by
the customer him/herself, but in our case, it is performed through interviews between an
IT consultant and a customer (or a representative of the customer). All decisions are
agreed between the IT consultant and the customer.

The requirement patterns, as information entities, are atomic (they cannot be partially
applied), do not overlap and cannot be merged into one single requirement.

The classification schemas are comprehensive in the sense that their leaves cover all
the relevant types of non-functional requirements (according to literature and to our
experience in OTS selection projects).

Before starting the exploration of patterns, the IT consultant chooses a classification
schema that will guide his/her exploration. Usually, if not always, the IT consultant will
choose the classification schema he/she is most familiar with.

At the beginning of the process, the IT consultant explains to the customer the
procedure that will be followed. This information makes the customer more aware of
what’s going on. In particular, the customer must get two messages: (1) requirements
flow: patterns will be explored according to the selected classification schema:
“standardized requirements” (i.e., patterns) will be proposed for a given scope of non-
functional requirements (i.e., a set of related classifiers) and when all “standardized
requirements” are explored for a given scope, then the scope will change and new
“standardized requirements” will be proposed; (2) individual processing: for each pattern
there will be a well-defined sequence of steps that will take place systematically.

4.2. Steps of the Process

Here we describe the different steps of the process, which are represented in Fig. 6. Two
phases are distinguished: the requirements elicitation itself, which consists of five steps
iteratively applied decomposed into activities (Fig. 7 shows their detail); and the
catalogue evolution phase, which maintains the pattern-related knowledge up-to-date.

Samuel Renault, Oscar Méndez, Xavier Franch, Carme Quer

188

Requirements Elicitation

IT Consultant Customer

Supplier SupplierSupplier

Requirements
Book

6

Knowledge of the
Reqt. pattern

catalogue

Reqt.
Patterns

Catalogue

Feedback
Repository

Call for
tenders

Catalogue
Evolution

Requirements
Expert

OTS-based
Solution

Needs

Patterns
Exploration

Forms
Exploration

Parts
Exploration

Requirem.
Extraction

Requirem.
Creation

Knowledge of
previous projects

Fig. 6. Pattern-based process for OTS-based solution selection.

4.2.1. Pattern Exploration

At each iteration, the IT consultant starts by selecting the next applicable pattern
according to the current classification criterion (step S.0 in Fig. 7), and once checked the
comments about this pattern (if any), he/she explains the description and goal of the
pattern to the customer (S.1). Based on this explanation, the IT consultant asks the
customer to define the importance of the pattern (decision D.1 in Fig. 7). If the customer
considers the pattern as not important for him/her, the IT consultant determines with the
customer whether the pattern matches customer’s needs (D.2). This decision allows a
quick way to skip the pattern without processing its elements entirely (S.2).

Skipping patterns at this step is only allowed when the customer considers that the
pattern goal does not match any customer need (by rating the importance as “low”).
When patterns are skipped, the IT consultant collects the reason for skipping for further
qualitative analysis of the patterns catalogue (feeding the feedback repository, see Fig. 6).
Then the IT consultant proceeds to the next pattern according to the classification.
Eventually, some other information could be used for choosing the next pattern
(dependencies, keywords, or even the dynamics of the elicitation process), but we have
not explored this issue yet.

A pattern-based method for building requirements documents in call-for-tender processes

189

R eq u irem e n t
crea tio n

R eq u ire m en t
e xtrac tio n

S .0
S e lec t n ext

pa tte rn

S .1
R ead the pa tte rn

(d esc rip tion &
goa l)

D .2
C he ck if

in te res ted by
the pa tte rn

n o

S .8
S e lec t va lue s fo r

pa ram ete rs (if any)

cho sen pa rts

S .10
C rea te ne w
requ irem en t

w ithou t p a tte rn

S .5
R ead the

p arts

so m e

F eed back :
S ta tis tics on use

o f pa tte rn

F ee dback :
S ta tis tic s on u se

o f p a ra m e te rs

F ee dback :
S ta tis tic s on u se

o f fo rm s

F eed back :
R eason fo r no t

us in g the pa tte rn

yes

S .3
R ead the

fo rm s

S .2
S k ip pa tte rn

F ee dback :
S ta tis tic s on u se

o f pa rts
m iss ing

p arts

O .2
N ew requ irem en t

O .1
P a tte rn use d

F orm +P arts+ V a lu es

D .1
S e t im portance

o f pa tte rn

h igh

low

D .4
C h eck

cons is ten cy

P arts
e xp lo ra tio n

F o rm s
e xp lo ra tio n

P attern s
exp lo ra tio n

no

ba sed on de pend ency
re la tionsh ips

none

based on
c lass ifica tion and /o r

re la tion sh ips

S .9
R eso lve co n flic ts

(if any)

D .3
C he ck if

pen d ing nee ds
fo r sco pe

S .4
C h oose m os t

appropria te fo rm fo r
th e pa tte rn

S .6
C ho ose exten ded

part tha t app ly

S .7
R ead d e ta ile d
in fo rm a tion fo r

pa ram ete rs

S .11
C rea te ne w

req u irem en t fo rm fo r
se lec ted p a tte rn

yes

S .12
C rea te ne w

requ irem en t p a rt(s)
fo r se lec ted fo rm

O .3
N ew requ irem en t

p a rt(s)

Fig. 7. Detail of the activities that take place during the requirements elicitation phase.

If the pattern selected in this iteration is the last one bound to the current scope (in

subsection A we defined “scope” as a set of related classifiers), before changing scope,

Samuel Renault, Oscar Méndez, Xavier Franch, Carme Quer

190

the IT consultant will ask the customer if there are still some needs related to this scope
that have not been covered with the patterns (D.3). If this is the case, it is necessary to
create one or more requirements from scratch (see Requirement Creation activity below).

4.2.2. Forms Exploration

If the customer chooses the pattern, this means that some requirement(s) bound to the
pattern goal must appear in the requirements book. The IT consultant explains the
different forms of the pattern, based on their descriptions (S.3). The customer then
chooses the most appropriate form to achieve the goal of the pattern according to his/her
context (S.4). The description of the chosen form can already be considered as part of the
requirement that will be included in the requirements book. If no existing form suits the
customer, the IT consultant will need to elaborate the requirement(s) in order to satisfy
the pattern goal; this information is also considered as feedback for the Catalogue
Evolution phase.

4.2.3. Parts Exploration

If some existing form has been selected, the IT consultant explains the different extended
parts composing the chosen pattern form (S.5). The consultant briefly explains each
parameter and gives example of possible values (found in the metrics description). The
customer chooses the most convenient parts to achieve the patterns goal according to its
context (S.6). The customer may choose more than one extended part for a specific form,
even one extended part can be applied more than once with different assignments of
values to parameters (examples of both situations may be found in the template example
presented in Fig. 4). Eventually some extension not existing in the catalogue may be
needed, again it becomes necessary to elicit the missing needs separately.

4.2.4. Requirement Extraction

For the chosen parts, the IT consultant gives more details about the parameters that apply,
e.g. details on possible correctness conditions, dependencies to/from other parameters,
and explains the exhaustive list of values for each parameter (S.7). Then the customer
chooses the values for the parameters (S.8). The requirement is extracted by applying the
pattern text of the selected parts with the parameters’ values that have been agreed
between customer and consultant. Several pattern texts from the different extensions
applied can be concatenated to extract one requirement. Using the template example of
Fig. 4, a possible requirement coming from the first form and applying the two
extensions once, could be: “The solution shall give an alert in the case of failure. Alerts
provided by the solution shall be: E-mail, SMS. Failures to be alerted of shall be:
ServerCrash, NetworkCrash.”

During the choice of values, the dependency relationships will be checked, in order to
verify the consistency between parameters and even between patterns (D.4). The different
types of dependencies have to be taken into account (in the case of patterns: conflicts,
synergies, etc.; in the case of parameters: value dependencies and arbitrary formulae), as

A pattern-based method for building requirements documents in call-for-tender processes

191

well as their direction (from which pattern to which other, i.e. the dependency may be
upon a pattern already considered or to some pattern still not considered during the
process). When the IT consultant detects a conflict or an inconsistency, he/she warns the
customer and they try to solve the conflict (S.9). Conflict resolution may be not
straightforward and may even force to reconsider requirements already agreed; we do not
tackle this issue here.

4.2.5. Requirement Creation

From the phases above, it is clear that in different situations, the extraction of a
requirement from the catalogue is not direct. To sum up, we have identified the following
situations:
• The patterns bound to some scope do not cover all the customer needs related to that

scope. The IT consultant uses the information about the classification criteria of the
scope to guide a classical requirements elicitation process (S.10).

• A pattern has been considered applicable but none of its forms fits well the needs of
the customer. The IT consultant will work with the customer until a good way of
expressing the goal of the pattern matching the needs of the customer is found
(S.11).

• A pattern form has been chosen but some detail is needed that is not captured by any
existing extensions. The IT consultant will work with the customer eliciting all the
details needed to complete the requirement with all the relevant information (S.12).

In all the cases, the requirement (or part of requirement) added to the requirement book is
provided as feedback to the requirements expert for the next phase, Catalogue Evolution.
Also, a question for that requirement must be considered in the call-for-tender process,
typically by rephrasing the requirement into an interrogative form. As an example, the
typical pattern text written as: “The system shall provide X”, will usually be converted
into “Is your system able to provide X”.

4.2.6. Catalogue Evolution

After the IT consultant has driven the requirements elicitation process and the
requirements book for the call-for-tender process is complete, the knowledge gained in
this project must be capitalized in the requirement pattern catalogue. As remarked in the
activities above, the IT consultant will collect the information useful for this purpose,
both failures and success on patterns application. For failures, the last bullet
(Requirement Creation) summarizes the situations that may be encountered in which the
catalogue does not contain all the information needed in this project at hand. For
successes, each application of a pattern is registered. We remark that there are cases in
the middle, e.g. when a requirement is applied but there is not form that captures its goal
in the appropriate terms, this is a success from the pattern point of view (i.e., the pattern
has been chosen and applied), but a failure from the form point of view (i.e., a form was
still missing).

Samuel Renault, Oscar Méndez, Xavier Franch, Carme Quer

192

The different actions that the requirements engineer may take to enlarge the
catalogue, and the situations in which these actions may be taken, are:
• Promote a requirement into requirement pattern. When a requirement has been

written from scratch (see first bullet in Requirements Creation activity).
• Create a new form. When a requirement comes from a pattern goal but without

applying any existing form (see second bullet in Requirements Creation activity).
• Create a new extension. When a requirement is expressed using some form but the

details needed were not contained in any existing extension (see third bullet in
Requirements Creation activity).

• Extend some existing extension. Remarkably when an extension contains some
metric of a domain defined by enumeration of its values, and some other values not
in domain have arose in the project.

But not just enlargement is possible, also some other operations can be applied over the
catalogue after updating the statistics about it with the data of this project:
• Removal of unused patterns, forms or extensions. When after this project some

threshold has been exceeded, the removal from the catalogue of those pieces of
information that do not seem to be relevant in call-for-tender processes may be
considered.

• Refactoring of the catalogue. For instance, changing the order in which forms of a
pattern are considered (most used forms first), or even more fundamental changes
like splitting or joining some patterns.

The decision on whether or not to take the actions is up to the requirements expert,
probably checking with IT consultants before taking the decision. At the current stage of
our research, we still do not have concrete advices about the conditions to apply these
actions.

5. The Use of the Requirement Patterns Catalogue in the PABRE Process

At the time being, the validation carried out has been twofold: on the one hand, internal
validation with requirements engineers; on the other hand, external validation in an
industrial project. As already mentioned, the current form of the catalogue embraces 29
patterns that have been classified according to two classification schemas, the ISO/IEC
9126-1 standard and the experience-based classification schema developed at CITI. The
current coverage of both classification schemas is quite similar: the catalogue covers 13
out of the 27 subcharacteristics of the ISO/IEC 9126-1 software quality model, and 29
out of 58 of the experience-based classification schema. Table 2 provides a more detailed
view of one of the two cases. It may be observed that one of the patterns has been
classified in two different subcharacteristics. We may expect other cases where this fact
will appear.

A pattern-based method for building requirements documents in call-for-tender processes

193

Table 2. Pattern classification using ISO/IEC 9126-1.

Functionality
Suitability -

Accuracy Precision

Interoperability Data Exchange, Interoperability with External Systems

Security Authentication, Authorization, Automatic Logoff, Stored Data Protection, Data
Transmission Protection

F. Compliance -

Reliability
Maturity Failure Alerts

Fault Tolerance Alternative Data Storage, Downtime, Uptime, Availability

Recoverability Log, Backup

R. Compliance -

Usability
Understandability Interface Language, Interface Type

Learnability Online Help, Interface Learnability, Documentation

Operability Installation Procedures, Recovering Procedures, Update Procedures, Failure Alerts

Attractiveness -

U. Compliance -

Efficiency
Time Behaviour Interface Load Time, Concurrent Users Capacity

Resource Behaviour Data Capacity, Users Capacity

E. Compliance -

Maintainability
Analyzability -

Changeability -

Stability -

Testability -

M. Compliance -

Portability
Adaptability Development Language

Installability Platform

Coexistence -

Replaceability -

P. Compliance -

Samuel Renault, Oscar Méndez, Xavier Franch, Carme Quer

194

5.1. Presentation to Requirement Engineers

We first presented the patterns, their structure and their classification criteria to
requirements engineers with a wide experience in OTS-based selection processes. We
proposed to them an initial version of the PABRE method.

They considered that we have a lot of interesting information about each pattern, but
that most of that information should not be shown during the requirements elicitation, if it
is not required. As for example metadata used for traceability and history purposes
(sources from where the patterns were obtained, keywords or author of the pattern) are
not necessary during the elicitation process.

Another conclusion was that it would be necessary to have a support tool for helping
in the presentation and browsing of the catalogue and to hide unnecessary information to
the IT consultant.

They contributed to the catalogue structure by noticing the possible dependencies
among values of parameters of different requirement patterns. We already had
dependencies among patterns, but we have not considered dependencies among
parameter values (see dependencies in Section III). They also required us that the process
and its support tool could guide the IT consultant in these cases. For example, advising
the IT consultant which would be the most appropriate value for a parameter, taking into
account the value previously assigned to another parameter.

5.2. Case study 1: Non functional requirements for a digital library project

At the early development of the non-functional patterns, we experienced a trial use of the
PABRE method in an industrial project. For this project we acted as IT Consultant
Company whose mission was the design of a requirements book for the renewal of a
digital library system for a customer.

The method was tested in one meeting dedicated to the elicitation of requirements.
Before using the patterns catalogue in this meeting, the customer had already identified
the scope, the goal and the future actors of the digital library system.

During the meeting, a research engineer took the role of IT consultant. From the
customer side, the project manager, a usability expert, a business expert and the head of
the IT department took part in the meeting. The classification schema chosen to browse
the patterns was the experience-based schema, since both the IT consultant and the
customers were used to it.

During this meeting 21 of the 48 patterns of the first version of the catalogue were
explored. From them, 17 patterns generated one or more requirements. Specifically 3 of
them were applied twice. Also 2 new requirements, not coming from the pattern
catalogue, were added in relation to classifiers of the experience-based classification
schema. In other words, from 22 requirements included in the requirements book after
this first meeting, 20 came from the catalogue, i.e. more than 90%. This was a very
positive indicator of the quality of the patterns initial catalogue.

If we talk specifically about the PABRE method, first of all as productivity rate,
producing these 22 requirements took 80 minutes, which does not seem a bad figure

A pattern-based method for building requirements documents in call-for-tender processes

195

especially taking into account that also for the IT consultant it was the first real
application of the method. The customer team also suggested of utmost importance to
have tool support to automatically generate the requirements book from the patterns
application. This was considered a key success factor.

This first case study helped us to improve both the contents and the structure of the
patterns catalog. As for the content improvement, redundancies were eliminated by
merging patterns (thus reducing the catalog from 48 to 32 patterns). Regarding the
structure, rules were added to control and drive the usage of the pattern’s forms and parts.

5.3. Case study 2: Non functional requirements for a CRM SaaS project

The second case study took place after improving the patterns catalog structure and
contents. We started with the catalog of 32 patterns already available as refinement of the
first version. Again, we acted as an IT Consultant Company to elicit non-functional
requirements. In this project the customer was willing to design a requirements book to
drive the selection of a Customer Relationship Management (CRM) solution. An
important constraint in the project was the necessity to select a CRM solution hosted by
the provider (Software as a Service, SaaS, or Application Service Provider model).

Before carrying out the elicitation of non-functional requirements, we helped the
customer to identify the main goals and functional requirements for the CRM solution.

The method was tested in two meetings dedicated to the elicitation of non-functional
requirements. For some organisational reasons (working language different from the
language of the catalogue), the process was not applied as-is during the meeting with the
customer, but rather applied a posteriori after the meeting. However we used the patterns
catalogue as a basis to drive the interview meetings. As a first step for the IT consultant,
we discarded 8 patterns that were not applicable due to the project’s context of SaaS
solution selection (step S.2 in the process) and we chose the experience-based
classification schema to browse the catalogue.

During the meetings, two research engineers took the role of IT consultants to elicit
non-functional requirements. From the customer side, the project manager, and five users
representative were present. In comparison to the first case study, none of the customer’s
individuals was particularly skilled in IT.

The first meeting lasted 2 hours during which we explored 16 patterns. The 8
remaining patterns were considered in a second one-hour meeting..

28 parts out of 17 forms were applied as is (O.1 resulting from S.8 in the process) and
5 requirements were extracted by adding an extra parameter in the extracted part (O.1
resulting from S.9 before S.8 in the process). For 3 patterns, new requirements were
identified at the level of a pattern’s part (Step S.13 in the process). S.10 and S.11 were
not applied at all, giving us a good confidence in the completeness of the current pattern
catalogue.

Usage rules were overridden 3 times: for 3 patterns the fixed parts were not used
because of their lack of precision; the extended parts were preferred. Further research for
considering this fact is needed.

Samuel Renault, Oscar Méndez, Xavier Franch, Carme Quer

196

This case study confirmed the necessity to have a tool supporting the exploration of
patterns and extraction of requirements so that to improve the efficiency of the process.

6. Analysis of the Method

6.1. Possible benefits

The possible benefits for consultants are the reduction of time spent to perform the
elicitation of the requirements and the improvement of the quality of the requirements
book obtained.

For requirements engineering experts, a benefit from using this method is a database
of requirements elicitation experiences that might be used for statistical analysis.

6.1.1. Faster requirements elicitation process

IT consultants use the former requirements’ elicitation process in consultancy projects
over 10 man-days in average for the elicitation and formalization of around 200
requirements (including functional, non-functional and non-technical requirements) and
between 15 to 25 man-days for the overall OTS selection, including call-for-tender
processes. With this patterns-based requirements’ elicitation process we aim at
downsizing consultancy project time down to 4 or 5 man-days for the requirements
elicitation part.

The reduction of time comes from the fact that patterns offer “ready to use”
requirements and that the catalogue covers the most common non-functional
requirements. Then the consultant spends less time on the elicitation of the requirements.
Also, the catalogue and the process have been designed to help the engineer and the user
to choose requirements in a faster way, since the most frequent output (use of the pattern
standard or ancestor forms) has the shortest decisional path.

6.1.2. Higher quality of the requirements book

The IEEE-830 standard [IEEE Recommended Practice for Software Requirements
Specification (1998)] describes recommended approaches for the specification of
software requirements (SRS). Among the recommendations it gives a set of
characteristics that must have a good SRS. These characteristics are: Correctness,
Unambiguity, Completeness, Consistency, Importance and/or Stability Ranking,
Verifiability, Modifiability, and Traceability. In this subsection we justify how the use of
the PABRE method and the pattern catalogue may drive to a good requirements book
taking into account the characteristics of this standard (see Table 3 for a summary).

Correctness. As the standard states, the achievement of this characteristic does not
depend on any tool or any procedure. However, the participation of the customer in the
elicitation process enforces its achievement.

Unambiguity. The idea is that the patterns catalogue will be unambiguous, since it is
the result of the study of multiple requirements books after a reviewing and a rewriting

A pattern-based method for building requirements documents in call-for-tender processes

197

process. Taking into account this pre-processing, we could eventually guarantee that the
requirements extracted from patterns will very rarely have any ambiguity; goals may play
an important part in this validation. However, this is not possible to be ensured for all the
requirements books, since it may include new requirements created during the elicitation
process not directly coming from patterns.

Completeness. If we provide a complete patterns catalogue, we may contribute to
obtain complete requirement books. This could be possible after some time of applying
the catalogue, and once arrived to a stable catalogue. However, we think that we may
never have a strictly complete patterns catalogue since there may always exist the need of
requirements that are very specific of projects, and it would not have sense have them as
patterns.

Table 3. Summary of quality characteristics addressed by the use of patterns

IEEE-830 Characteristics Addressed

Correctness An SRS is correct if, and only if, every requirement
stated therein is one that the software shall meet. No

Unambiguity An SRS is unambiguous if, and only if, every
requirement stated therein has only one interpretation. Partially

Completeness

An SRS is complete if, and only if, it includes: all
significant requirements, definition of the responses of the
software to all realizable classes of input data in all
realizable classes of situations and definition of terms and
full labels and references to all figures, tables, and
diagrams.

Partially

Consistency An SRS is consistent if, and only if, no subset of
individual requirements described in it conflict. Partially

Importance and/or
Stability Ranking

An SRS is ranked for importance and/or stability if each
requirement in it has an identifier to indicate either the
importance or stability of that particular requirement.

No

Verifiability

An SRS is verifiable if, and only if, every requirement
stated therein is verifiable. A requirement is verifiable if,
and only if, there exists some finite cost-effective process
with which a person or machine can check that the
software product meets the requirement.

Yes

Modifiability

An SRS is modifiable if, and only if, its structure and
style are such that any changes to the requirements can be
made easily, completely, and consistently while retaining
the structure and style.

Yes

Traceability

An SRS is traceable if the origin of each of its
requirements is clear and if it facilitates the referencing of
each requirement in future development or enhancement
documentation.

No

Samuel Renault, Oscar Méndez, Xavier Franch, Carme Quer

198

Consistency. In our patterns catalogue, that we have pre-processed to guarantee that is
consistent, we explicit any dependency that can exists among patterns, or parameter
values of patterns. If these dependencies are taken into account during the elicitation
process, we may guarantee that the subset of requirements of the requirement book that
have been extracted from the catalogue are consistent. However, as in the case of
unambiguity, we may not guarantee the consistency of the whole book, since there may
have requirements created during the elicitation process.

Importance and/or Stability Ranking. This characteristic does not depend of the use of
requirement patterns. However, this classification was already done in the previous
process, and it is maintained in the new one.

Verifiability. The way in which we propose to write the requirement patterns will
drive to verifiable requirements that do not contain any non-definable or non-evaluable
terms. Specifically, when a pattern is applied the parameters of the pattern must take
some concrete value that will ensure the verifiability of the corresponding requirements.

Modifiability. The requirements book obtained will have an easy-to-use organization
corresponding to the chosen classification schema, and the use of the patterns catalogue
will guarantee that all requirements that will be extracted from a pattern of the catalogue
are not intermixed.

Traceability. On the one hand, the backward traceability of requirements in the
requirement book, which were extracted from the patterns catalogue, is partially
guaranteed by the catalogue because in the catalogue we maintain the sources from were
the patterns were derived. However, the other references to the origin taking into account
earlier documents of the project, or the backward traceability of new requirements, do not
depend on the use of the catalogue. On the other hand, the forward traceability with a
unique name or reference number given to requirements was already done in the previous
process, and it is maintained in the new one.

6.1.3. Statistics on Requirements Engineering projects

The fact of using a systematic process for performing requirements elicitation allows the
collection data for statistical analysis.

For a given requirement engineering project, the divergence of a project can be
identified when patterns are often skipped or new requirements are created apart from
pattern elements.

For a set of requirements engineering projects using the pattern catalogue, quality of a
pattern can be identified when the first form is preferred to the other form.

For a set of requirements engineering projects using the patterns catalogue,
completeness of the patterns catalogue can be identified when the pattern forms are
preferred to the creation of new requirements.

A pattern-based method for building requirements documents in call-for-tender processes

199

6.2. Possible Drawbacks

6.2.1. Heaviness of the process

The process may be “heavy” for inexperienced IT consultants that discover the catalogue
and that are more used to collect requirement in a less driven manner. It is then necessary
to plan an initial training on the concept of requirements patterns and on the navigation
throughout the catalogue. For this last necessity, goal matching or faceted descriptions
using keywords could be explored in the future.

Even experienced consultants can find inefficient the fact of processing the entire
catalogue during one interview rather than identifying requirements in an exploratory
way. To tackle this issue one may consider pre-selecting patterns and parameters before
the interview, on the basis of information regarding the current IT infrastructure and IT
strategy of the customer. These pieces of information are usually collected before the
requirements elicitation interviews. After this “pre-selection” of patterns the consultant
only needs to confirm his/her analysis with the customer. However this may introduce a
bias since requirements are no more elicited from the customer but deducted by the
consultant.

7. Conclusion and Future Work

In this paper we have presented PABRE, a pattern-based method to ease the requirements
elicitation process for OTS selection projects. Early feedback from IT experts and an
ongoing case study give us confidence in the fact that this approach can increase
efficiency of requirements elicitation as well as quality of the produced requirements.

The main contributions of our approach are:
• PABRE is an OTS selection method customized to the particular case of call for

tender projects. This characteristic makes it different from other well-known existing
methods like OTSO, PORE, CARE or others filling thus an existing gap in the
current state of the art.

• PABRE is a method that tries to fit the reality of industrial OTS selection projects. It
has been designed with the knowledge acquired from practice and does not try to
impose methods or techniques that may be difficult to adopt in practice like multi-
criteria decision-making techniques, goal-oriented reasoning, etc.

• PABRE supports knowledge capitalization by means of a reuse infrastructure based
on practice. “Based on practice” means that the knowledge reused comes from past
experiences, and the updating of this knowledge is integrated into the PABRE
process itself.

• PABRE is highly customizable to the specific needs of IT companies and
organizations. On the one hand, we have used a particular pattern structure but others
could be equally valid. On the other hand, the separation among the catalogue itself
and the classification schemas used to browse it allows applying it to different
realities.

Samuel Renault, Oscar Méndez, Xavier Franch, Carme Quer

200

Future work focuses especially on gaining experience. In spite of the early feedback
mentioned above, we need to assess the efficiency of the PABRE method and the
completeness of the catalogue with more case studies. To do so, we plan to gradually
propose the use of the PABRE method to IT consultants members of the CASSIS
network (a network of certified IT consultants in Luxembourg and surrounding area
[Renault et al. (2007)]), before generalizing it to every project of software selection
performed by an IT consultant of this network.

Eliciting non-functional requirements has been a good starting point for capitalizing
knowledge, since these requirements do not vary much from a project to another. In a
near future we plan to extend the catalogue with patterns related to non-technical
requirements and functional requirements. Given the nature of non-technical
requirements [Carvallo et al. (2006)], we think that the situation will be similar to non-
functional ones, i.e., the identified patterns will be mostly domain-independent (although
distinctions in the type of software, e.g. OSS vs. COTS components) may yield to some
variability. As for functional requirements patterns, we have already mentioned that they
are domain-dependant. We are currently focusing on the ERP systems domain, starting
by one particular module (Sales module), given that this type of component is focus of
many consultant-assisted projects. Other business-application-related domains, i.e. CRM
or DM systems, will be next targets.

Some ideas regarding the improvement of the catalogue have been proposed in the
catalogue evolution part of section IV. As soon as we will have a sufficient amount of
feedback from usages of the catalogue, we intend to formalize a more precise method for
managing the evolution of patterns in the catalogue with the feedback material repository.

Acknowledgments

This work has been partially supported by the Spanish project ref. TIN2007-64753.

References

C. Alexander. The Timeless Way of Building. Oxford Books, 1979.
V.R. Basili, B. Boehm. “COTS-based Systems Top 10 List”. IEEE Computer, 34(5), May 2001.
D. Carney, F. Leng. “What do you mean by COTS? Finally, a useful answer”. IEEE Software,

17(2), March-April 2000.
J.P. Carvallo, X. Franch, C. Quer. “Managing Non-Technical Requirements in COTS Components

Selection”. In Proceedings of the 14th IEEE International Requirements Engineering
Conference (RE’06), 2006.

B.H.C. Cheng, J.M. Atlee. “Research Directions in Requirements Engineering”. In Proceedings of
the 29th IEEE International Conference on Software Engineering (ICSE’07), Minneapolis,
Minnesota (USA), 2007.

L. Chung, B. Nixon, E. Yu, J. Mylopoulos. Non-functional Requirements in Software Engineering.
Kluwer Publishing, 2000.

J.L. Cybulski, K. Reed. “Requirements Classification and Reuse: Crossing Domain Boundaries”. In
Proceedings of the 6th International Conference on Software Reuse (ICSR-6), Vienna (Austria),
2000.

A pattern-based method for building requirements documents in call-for-tender processes

201

A. Durán, B. Bernárdez, A. Ruíz, M. Toro. “A Requirements Elicitation Approach Based in
Templates and Patterns”. In Proceedings 2nd Workshop on Requirements Engineering
(WER’99), 1999.

A. Egyed, P. Grünbacher. “Identifying Requirements Conflicts and Cooperation: How Quality
Attributes and Automated Traceability Can Help”. IEEE Software, 21(6), November-December
2004.

M. Fowler. Analysis Patterns. Addison-Wesley, 1997.
M. Galster, A. Eberlein, M. Moussavi. “Matching Requirements with Off-the-shelf Components at

the Architectural Level”. In Proceedings of the 2nd International OTS-Based Development
Methods Workshop (IOTSDM'07), Banff, Alberta (Canada), 2007.

E. Gamma et al. Design Patterns. Addison-Wesley, 1995.
ISO/IEC Standard 9126-1. Software Engineering – Product Quality – Part 1: Quality Model, 2001.
S. Konrad, B.H.C. Cheng. “Requirements Patterns for Embedded Systems”. In Proceedings 10th

IEEE International Requirements Engineering Conference (RE’02), Essen (Germany), 2002.
J. Kontio. “A case study in applying a systematic method for COTS selection”. In Proceedings of

the 18th IEEE International Conference on Software Engineering (ICSE’96), Berlin
(Germany), 1996.

M. Krystkowiak, B. Bucciarelli. “COTS Selection for SMEs: a Report on a Case Study and on a
Supporting Tool”. In Proceedings of the 1st International Workshop on COTS and Product
Software: Why Requirements are so Important (RECOTS’03), Monterey, California (USA),
2003.

M. Krystkowiak, V. Betry, E. Dubois. “Efficient COTS Selection with OPAL Tool”. In
Proceedings of the 1st International Workshop on Models and Processes for the Evaluation of
COTS Components (MPEC'04), Edinbourgh, Scotland (UK), 2004.

W. Lam, T.A. McDermid, A.J. Vickers. “Ten steps towards systematic requirements reuse”. In
Proceedings of the 3rd IEEE International Symposium on Requirements Engineering
(ISRE’97), Annapolis, Maryland (USA), 1997.

S. Lauesen, J.-P. Vium. “Experiences from a tender process”. In Proceedings of 10th Workshop on
Requirements Engineering: Foundation for Software Quality (REFSQ'04), Riga (Latvia), 2004.

J. Li, F.O. Bjornson, R. Conradi, and V. By Kampenes. “An Empirical Study of Variations in
COTS-Based Software Development Processes in the Norwegian IT Industry”. Journal of
Empirical Software Engineering, 11(3), 2006.

J. Li et al. “A State-of-the-Practice Survey of Risk Management in Development with Off-the-
Shelf Software Components”. IEEE Transactions Software Engineering 34(2), 2008.

T.R. Madanmohan, D. Rahul. “Open Source Reuse in Commercial Firms”. IEEE Software, 21(6),
November-December 2004.

N. Maiden, C. Ncube. “Acquiring Requirements for COTS Selection”. IEEE Software, 15(2), 1998.
D. Matheson, I. Ray, I. Ray, S. H. Houmb. “Building Security Requirement Patterns for Increased

Effectiveness Early in the Development Process”. In Proceedings of Symposium on
Requirements Engineering for Information Security (SREIS’05), 2005.

O. Mendez, X. Franch, C. Quer. “Requirements Patterns for COTS Systems”. In Proceedings of the
7th International Conference on Composition-Based Software Systems (ICCBSS 2008), 2008.

A. Mohamed, G. Ruhe, A. Eberlein. “COTS Selection: Past, Present, and Future”. In Proceedings
of the 14th Annual IEEE International Conference and Workshops on the Engineering of
Computer-Based Systems (ECBS’07), Tucson, Arizona (USA), 2007.

Samuel Renault, Oscar Méndez, Xavier Franch, Carme Quer

202

B. Moros, C. Vicente, A. Toval. “Metamodeling Variability to Enable Requirements Reuse”. In
Proceedings of 13th International Workshop on Exploring Modeling Methods for Systems
Analysis and Design (EMMSAD'08), Montpellier (France), 2008.

K. Pohl, G. Böckle, F. van der Linden. Software Product Line Engineering. Springer Verlag, 2005.
S. Renault, B. Barafort, E. Dubois, M. Krystkowiak. “Improving SME trust into IT consultancy: a

network of certified consultants case study.” In EuroSPI 2007 Industrial proceedings, 10.1 -
10.8., Potsdam, Germany, 2007.

S. Renault, O. Méndez, X. Franch, C. Quer. “PABRE: Pattern-Based Requirements Elicitation.” In
IEEE Proceedings of the 3rd International Conference on Research Challenges in Information
Systems (RCIS), Fès (Morocco), May 2009.

S. Robertson. “Requirements Patterns Via Events/Use Cases”. In Proceedings Pattern Languages
of Programming (PLoP’96), Washington University Technical Report (#wucs-97-07), 1996.

S. Robertson, J. Robertson. Mastering the Requirements Process. Addison-Wesley, 1999.
IEEE Recommended Practice for Software Requirements Specifications. IEEE Computer Society,

1998.
I. Sommerville. “Integrated Requirements Engineering: A Tutorial”. IEEE Software, 22(1),

January-February 2005.
M. Torchiano, M. Morisio. “Overlooked Aspects of COTS-Based Development”. IEEE Software

21(2), 2004.
S. Withall. Software Requirements Patterns. Barnes & Noble, 2008.

