
International Journal of Computer Science and Applications,            Technomathematics Research Foundation 
2008, Vol. 5, No. 3a, pp 20 -  32 

20 

ALTIVEC VECTOR UNIT CUSTOMIZATION FOR EMBEDDED SYSTEMS 

TARIK SAIDANI 

Fundamental Electronics Institute, University of Paris South 11, 
91405 , Orsay cedex , France 

tarik.saidani@u-psud.fr 

http://www.ief.u-psud.fr/~saidani 

JOEL FALCOU 

Fundamental Electronics Institute, University of Paris South 11, 
91405 , Orsay cedex, France 

joel.falcou@u-psud.fr 

http://www.ief.u-psud.fr/~falcou 

LIONEL LACASSAGNE 

Fundamental Electronics Institute, University of Paris South 11, 
91405 , Orsay cedex, France 
lionel.lacassagne@u-psud.fr 

http://www.ief.u -psud.fr/~lacas 

SAMIR BOUAZIZ 

Fundamental Electronics Institute, University of Paris South 11, 
91405 , Orsay cedex, France 

samir.bouaziz@u-psud.fr 

 
Abstract 
Vector extensions for general purpose processors are an efficient feature to  address the growing performance 
demand of multimedia and computer vision applications. Embedded processors are the most widespread 
architectures for such applications. While provid ing sufficient computing power for these applications, they 
must take into account power, area and real- time constraints. In this paper, we propose two hardware 
optimization techniques to address those constraints: RISCization and instruction set customization.  
Experimental results show that those techniques both reduce time and power consumption by up to 50% when 
compared to the original ISA. 
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1. Introduction 

SIMD extensions were developed to face the growing demand of computing power of 
general purpose processors (GPP) coming from multimedia and gaming applications. 
They started appearing in 1994 in HP's MAX2 and Sun's VS extensions and can now be 
found in most of the GPPs. The vector instruction set exploits the data level parallelism 
(DLP) present in this kind of applications. Intel introduced MMX [Peleg (1996)], then 
SSE, SSE2 and SSE3 extensions for the Pentium processors, Freescale developed the 
Altivec [Diefendorff (2000)] unit on PowerPCs. These extensions contain 128-bit 
registers which provides 16-way 8-way and 4-way data level parallelism. The embedded 
processors are designed to perform a set of tasks under several constraints on the SoC 
(Sytem on Chip) area, execution time and power consumption. Since the workload in 
embedded applications become similar to PC applications those constraints become 
critical. Computer vision algorithms are a class of data intensive applications that we 
consider in this paper. They are characterized by regular operations on large sets of data, 
and composed of a combination of convolution kernels and other arithmetic operations. 
Image processing applications imply a large memory transaction per computation ratio 
and must satisfy real-time constraints in the context of video flow. Therefore, SIMD 
extensions are good candidates for improving the performances of those applications. 
However, when trying to extend the SIMD paradigm to embedded systems there are 
several hardware barriers, in particular for area and power consumption. 
In this paper we apply some hardware optimization techniques to make the Altivec unit 
fits the embedded systems constraints, when making some assumptions about the 
application domain. The first one that we called RISCization consists in reducing the 
complexity of the instructions to increase the operating frequency and therefore to 
decrease the processing time. The second optimization takes benefit from the versatility 
of the Altivec ISA by restricting their functionalities. The remainder of the paper is 
organized as follows. Related work is discussed in Section 2. Section 3 provides the 
motivation of our work by demonstrating the efficiency of the SIMD units in processing 
computer vision typical operators. Section 4 introduces the RISCization concept with 
hardware implementation on a FPGA. The instruction customization technique is 
described in Section 5, and conclusions are drawn in Section 6. 
 

2. Related Work 

A lot of research work has been done in instruction set customization, a co-processor is 
automatically synthesized to accomplish a portion of a code where the program spend the 
major part of its execution time in [Athanas, P. M. (1993)]. In [Sun (2004)] an automatic 
methodology to select custom instructions to augment an extensible processors is 
described, in order to maximize its efficiency for a given application program. The 
author’s methodology features cost functions to guide the custom instruction selection 
process, as well as static and dynamic pruning techniques to eliminate inferior parts of 
the design space from consideration. A Dynamic Instruction Set Computer (DISC) has 
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been developed in [Wirthlin (1995)], instructions occupy FPGA resources only when 
needed and FPGA resources can be reused to implement an arbitrary number of 
performance-enhancing application-specific instructions. The SIMD extension case was 
treated in [Chouliaras (2008)]. In most of the articles cited above the power consumption 
problem was addressed as a parameter for validating the approach, but tuning this power 
consumption was not actually considered.  

 

 

 
 
In our paper we provide two optimization mechanisms which aims to reduce the power 
consumption in image processing operators. 

3. Software SIMD Implementation 

3.1.  Architecture Presentation 

AltiVec is an extension designed to enhance PowerPC processor performance on 
applications handling large amounts of data. The AltiVec architecture is based on a 
SIMD processing unit integrated with the PowerPC architecture. It introduces a new set 
of 128 bit wide registers distinct from the existing general purpose or floating-point 
registers. These registers are accessible through 160 new vector instructions that can be 
freely mixed with other instructions (there are no restriction on how vector instructions 
can be intermixed with branch, integer or floating-point instructions with no context 
switching nor overhead for doing so). Altivec handles data as 128-bit vectors that can 
contain sixteen 8-bit integers, eight 16-bit integers, four 32-bit integers or four 32-bit 
floating-point values. For example, any vector operation performed on a vector char is in 
fact performed on sixteen char simultaneously and is theoretically running sixteen times 

Fig.1. Altivec vec_msum instruction 
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faster as the scalar equivalent operation. AltiVec vector functions cover a large spectrum, 
extending from simple arithmetic functions (additions, subtractions) to boolean 
evaluation or lookup table solving. 
The AltiVec ISA is more complete ISA than Intel SSE2 and SSE3, and provides some 
instructions like vec_msum which is very useful for dot product and FIR (Finite Impulse 
Response) computations. The synopsis of the instruction d=vec_msum(a; b; c) 
[Freescale (1999)] is given in Fig. 1. Eight bit multiplications are performed to provide 

intermediate products that are accumulated through a 4-block reduction inside 32-bit 
blocks: P = reduc4(A:B). The second stage of the instruction performs an 
accumulation of P with a third register 
D = reduc4(reduc4(A:B) + C). 
From a scalar point of view, the instruction performs sixte en 8-bit multiplications, eight 
16-bit and four 32-bit sums, which gives a total of 36 scalar instructions inside a unique 
SIMD instruction. The 4-block reduction step makes this instruction well suited for fi lters 
whose size is a multiple of 4. One can note that for dot product, a second instruction 
vec_sums should be used to reduce the four 32-bit blocks D0;D1;D2;D3 inside one 
block (Fig. 2). 

3.2.  Software Benchmark Results  

In order to demonstrate the benefits of vectorizing computer vision codes [Ollmann 
(2001)], we compared scalar and SIMD implementations of basic image processing 
operators: dot product and FIR. Therefore we performed software benchmarks on the 
scalar and SIMD versions of the code. The metric that we used in our experiments is the 
number of clock cycles per pixel cpp. 
 

 
.

²
t Fcpp
N

= . (1) 

 
Where N is the width of a square input image, t the operator execution time in seconds 
and F the clock's frequency of the processor in Hertz (1Ghz on the PowerPC G4). 
Measuring the cpp to compare the different implementations is a fair comparison, since it 

Fig. 2. 4 -block reduction with vec_sums instruction 
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does not depend on the processor's frequency. Moreover, cpp is a relevant cache miss 
detector. In our benchmark we consider a data size varying from 128x128 to 1024x1024.  
 
The first benchmarked operator is dot product, which operates on two vectors of size N2, 
and computes a scalar according to the equation: 
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vector int dot_pr_msum(vector unsigned char *a , vector unsigned char *b, unsigned 
int N) 
{  

unsigned int i; 
vector unsigned char X, Y; 
vector int s, s_r; 
vector int zero_vector_32=(vector int)(0); 
s = zero_vector_32; 
for(i =0; i<N/16; i++){ 
  X=vec_ld (0, &a[i]); 
  Y=vec_ld (0, &b[i]); 
  s = (vector int) vec_msum(X,Y, (vector unsigned int)s); 
} 
s_r=vec_sums(s ,zero_vector_32); 
return s_r; 

 

} 
 
Listing 3 provides a comparison between the scalar and the SIMD version of dot product, 
using the dedicated instruction vec_msum. While the gap between the scalar and SIMD 

Listing 1. dot product function using vec_msum 

Fig. 3. cpp of dot product on PowerPC G4 
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implementation is almost the same (?  ≅ 12), the speedup varies from x45 for small data 
sizes to x4.1 for large ones. We then conclude that the gain provided by vectorization is 
limited by the cache size. 
The second basic image processing operator that we vectorized is a 4-tap FIR filter: 
 

 
3

0

( , ) ( ). ( , )
k

Y i j f k X i j k
=

= +∑ . (3) 

We consider a 4-tap FIR to fully exploit the DLP offered by the 16-byte registers. As we 
observed for the dot product, and for the same reasons, the gap between the scalar and 
vector implementations is constant (?  ≅ 12). Moreover, the speedup varies from x14.9 for 
small images to x4.4 for large ones. 
 

4. RISCization 

The efficiency of vector units in processing computer vision algorithms being 
demonstrated, we can present the hardware optimization techniques that we performed to 

make the AltiVec instructions more convenient for embedded architectures. The first one 
that we called RISCization consists in replacing a complex SIMD instruction (CISC), 
with a set of simpler (RISC) instructions from the same ISA. First, this technique is 
implemented in software to see if it changes drastically the time performances of the 
algorithm. There are several ways to split the vec_msum instruction into a set of RISC 
instructions. For instance, by replacing 8-bit by 16-bit multiplications (16-bitx16-bit 
→16-bit) or by replacing 4-block reductions by 4 separate accumulators. The most 
simplified equivalent set of instructions is given in 5 and is described below: 
(1) the input 8-bit operands A,B are converted into two 16-bit data (low part and high 

part). 

Fig. 4. cpp of FIR4 on PowerPC G4. 
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(2) a 16-bit block wise multiplication is performed: neither overow nor truncation are 
necessary since input data are 8-bit wide. 

(3) conversion to 32-bit blocks . 
(4) 32-bit accumulation. 
(5) reduction (using vec_sums) to sum the four 32-bit blocks. 
Fig. 6 and Fig. 7 present the best cpp for three CISC and RISC versions. Several versions 
have been implemented (For instance with various schemes to replace reduction 
instructions.  
Only three are presented, one for each multiplication instruction of AltiVec ISA: 
vec_msum, vec_mladd and vec_mule/vec_mulo. 

 
vector unsigned char **fir_vec(vector unsigned char** IM_OR, vector unsigned char** 
IM_RES, int64 nrl, int64 nrh, int64 ncl, int64 nch, unsigned char*fir, int64 fsize) 
{ 

int64 i,j; 
 int k; 
 vector unsigned char im_or0,im_or1,im_or, im_res; 
 vector unsigned char fir_vector; 
 fir_vector.v=(vector unsigned char)(0); 
 vector unsigned char dup_vector; 
 dup_vector=(vector unsigned char)(0,1,2,3,0,1,2,3,0,1,2,3,0,1,2,3); 
 vector unsigned int temp; 
 vector unsigned int vector_zero32; 
 vector_zero32=(vector unsigned int)(0); 
 vector unsigned int acc00,acc01,acc10,acc11; 
 vector unsigned short acc0,acc1; 
 vector unsigned char res; 
 vector unsigned short shifter; 
 shifter=(vector unsigned short)(8); 
 vector unsigned char permuter; 
 permuter=(vector unsigned char)(0,4,8,12,1,5,9,13,2,6,10,14,3,7,11,15); 
 for(k=0;k<fsize;k++){ 
  fir_vector.t[k]=fir[k]; 
  fir_vector.t[k]=fir[k]; 
  fir_vector.t[k]=fir[k]; 
  fir_vector.t[k]=fir[k]; 
 } 
 fir_vector.v=vec_perm(fir_vector.v,fir_vector.v,dup_vector); 
 for(i=nrl;i<=nrh;i++){ 
  for(j=ncl;j<nch;j++){ 
      im_or0=vec_ld(0, &IM_OR[i][j]); 
      im_or1=vec_ld(15,&IM_OR[i][j]); 
      im_or=vec_sld(im_or0,im_or1,0); 
      acc00=vec_msum(im_or,fir_vector.v,vector_zero32); 
      im_or=vec_sld(im_or0,im_or1,1); 
      acc01=vec_msum(im_or,fir_vector.v,vector_zero32); 
      im_or=vec_sld(im_or0,im_or1,2); 
      acc10=vec_msum(im_or,fir_vector.v,vector_zero32); 
      im_or=vec_sld(im_or0,im_or1,3); 
      acc11=vec_msum(im_or,fir_vector.v,vector_zero32); 
      acc0=vec_sr(vec_pack(acc00,acc01),shifter); 
      acc1=vec_sr(vec_pack(acc10,acc11),shifter); 
      res=vec_pack(acc0,acc1); 
      IM_RES[i][j]=vec_perm(res,res,permuter); 
  } 
 } 
   return IM_RES; 

Listing 2. FIR Filter vectorization 
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• a CISC version with the vec_msum reduction instruction, 
• a  RISC first version, with the vec_mladd 16-bit multiplication-accumulation 

instruction: D = A xB + C, 
• a second RISC second version , with only the vec-mule and vec-mulo 8-bit 

multiplication (8-bitx8-bit→16-bit) instructions. 
 
For RISC versions, reductions are replaced by a set of additions (vec-add) and 
permutations (vec_perm). Obviously the RISC versions are slower than the CISC one 
since more complex computing is done at the same throughput (1 instruction/cycle). 
However, we can not assert that it is the case on hardware since operating frequency 
depends on the instruction complexity. 
 
 
 
vector int dot_pr_risc(vector unsigned char *a, vector unsigned char *b, 

unsigned int N) 
{ 
 unsigned int i; 
 vector unsigned char X,Y; 
 vector short A0,A1,B0,B1,zero_vector16; 
 vector short P0,P1; 
 vector int P00,P01,P10,P11,AC0,AC1,AC,sr; 
 vector int zero_vector32=(vector int)(0); 
 zero_vector16=(vector short)(0); 

Fig. 5. vec_msum RISCization 
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 AC=(vector int)(0); 
 AC0=(vector int)(0); 
 AC1=(vector int)(0); 
  
  
 for(i=0;i<N/16;i++) 
 { 
  X=vec_ld(0, &a->v[i]); 
  Y=vec_ld(0, &b->v[i]); 
   
  A0=vec_unpackh((vector char)X); 
  A1=vec_unpackl((vector char)X); 
  B0=vec_unpackh((vector char)Y); 
  B1=vec_unpackl((vector char)Y); 
   
  P0=vec_mladd(A0,B0,zero_vector16); 
  P1=vec_mladd(A1,B1,zero_vector16); 
   
  P00=vec_unpackh((vector short)P0); 
  P01=vec_unpackl((vector short)P0); 
  P10=vec_unpackh((vector short)P1); 
  P11=vec_unpackl((vector short)P1); 
   
  AC0=vec_add(P00,P01); 
  AC1=vec_add(P10,P11); 
   
  AC=vec_add(AC,vec_add(AC0,AC1)); 
 } 
  
 sr=vec_sums(AC,zero_vector32); 
 return sr; 
  
  
} 

 
 
 

Fig. 6. cpp of dot product on PowerPC G4  

Listing 3. example code of dot product RISCization 
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5. Hardware Implementation 

In order to estimate the impact of RISCization, SIMD instructions have been synthesized 
on a Virtex4 [Xilinix (2007)] FPGA. RISC and CISC blocks combinations have been 
compared through orthogonal criteria like area utilization, running frequency F, power 
consumption P and execution time t. While cpp is meaningful for software benchmarks, t 
should be preferred in the case of hardware benchmarks. Since the running frequency 
depends on the implemented operators, the fastest implementation (with the smallest t) is 
not necessarily the one with the smallest cpp. Two assumptions have been made for the 
comparison: FPGA and the PowerPC G4 have the same AltiVec instructions latencies 
and the FPGA could be interfaced with a memory hierarchy whose specifications (cache 
size, associativity, and latencies) would be equivalent to those of PowerPC G4 ones. 
Using Xilinx ISE and XPower Estimator tools, power consumptions have been estimated 
for each standalo ne SIMD AltiVec instruction (these measures do not take into account 
the consumption of the I/O blocks). Tables 1 and 2 present the results for 256x256, 
512x512 and 1024x1024 data size. 

Table 1. dot product synthesis results. 

Version cpp Area %  F (MHz) P (Watt) t (ms) E (µJ) 
256x256 data  
msum 0.44 22.5 151 0.202 0.191 39 
mladd 0.61 24.2 256 0.165 0.156 26 
mul 0.97 23.5 209 0.110 0.303 33 
512x512 data  

Fig. 7. cpp of FIR Filter on PowerPC G4 
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msum 1.32 22.5 151 0.202 2.292 463 
mladd 1.51 24.2 256 0.165 1.545 255 
mul 1.78 23.5 209 0.110 2.227 245 
1024x1024 data  
msum 3.91 22.5 151 0.202 27.154 5485 
mladd 3.97 24.2 256 0.165 16.251  2681 
mul 4.19 23.5 209 0.110 20.969 2307 

Table 2. FIR synthesis results. 

Version cpp Area %  F (MHz) P (Watt) t (ms) E (µJ) 
256x256 data  
msum 1.25 20.5 164 0.213 0.499 106 
mladd 1.49 21.2 337 0.258 0.290 75 
mul 1.53 21.5 337 0.264 0.298 79 
512x512 data  
msum 1.84 20.5 164 0.213 2.940 626 
mladd 2.12 21.2 337 0.258 1.650 426 
mul 2.13 21.5 337 0.264 1.658 438 
1024x1024 data  
msum 1.84 20.5 164 0.213 26.908 5731 
mladd 2.12 21.2 337 0.258 13.700 3535 
mul 2.13 21.5 337 0.264 13.856 3658 
 
In order to estimate the efficiency of the embedded system, we measure the amount of 
energy E = txP required to compute the algorithm. Once the processing speed is enforced 
(typically t < 33ms for 30 images/s), the total energy E is the constraint to optimize, not 
only the power P. One can note also, that synthesis tools provide the maximum running 
frequency. If the overall algorithm implementation is too fast, implying too high power 
consumption, the system can be down-clocked. First, if we look at the execution time, we 
can see that the CISC version is never the fastest one, but vec_mladd which is a 
complexity golden mean between vec_msum and vec_mule/vec_mulo. Gains vary 
from x1.2 up to x1.6 for dot product and from x1.7 up to x2.0 for FIR. These results are 
very important: from the execution time point of view, a direct implementation into an 
FPGA of the classic dedicated and “optimized-for” CISC instruction will lead to a non 
optimal implementation. 
Second, if we focus on energy, the gains between CISC and RISC version range from 
x1.6 up to x2.0 for dot product and from x1.4 up to x1.6 for FIR. That validates our 
RISCization approach: usually the fastest implementation is also the most power hungry 
one, but it the case of mapping SIMD instruction from a general purpose processor to an 
FPGA, this is not the case: RISC implementations are quick and energy efficient! 
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6. Instructions Customization 

 
The second hardware optimization that we performed on our kernels is instruction 
customization. This technique is complementary to RISCization as it reduces the size of 
those instructions used in the implemented operators. Thus it compensates the growth of 
instruction number caused by RISCization. Instruction customization reduces the useless 
capabilities of versatile instructions. The AltiVec instruction vec_perm (synopsis 8) is 
an interesting example. This instruction behaves like a complete crossbar and not only 
performs permutations with regular patterns (as SSE2+ instructions can do), but also with 
irregular patterns. For a given algorithm or application, only a few set of these 
capabilities are useful. For dot product and FIR, the only need is to construct unaligned 
vector registers. By specializing, such an instruction, area size and power consumption 
can be drastically reduced. Specialization has been applied to the multiply-add operation 
vec_mladd. The instruction is split into two instructions: vec_mul that does not exist 
in Altivec ISA in 16-bit version, and vec_add 
(vec_mladd(A,B,C)=vec_add(vec_mul(A,B),C)). 
 

Table 3. gain provided by customization 

Instruction Area Reduction Power 
Reduction 

vec_sums 32 % 1 % 
vec_msum 32 % 3 % 
vec_mladd 22 % 3 % 
vec_sum4s 30 % 3 % 

vec_perm(v1) 56 % 5 % 
vec_perm(v2) 35 % 5 % 

Fig. 8. AltiVec permutation instruction 
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Table 3 presents the area and power consumption reduction provided by instruction 
specialization. These results was obtained with a synthesis on a Virtex-4 FPGA. One can 
note that power gain is not important because the difference between versions resides in 
the logical blocks; these blocks are not great power consumers. However, customization 
can significantly reduce area occupation. As SIMD instructions are quite big they can 
prevent from completing a synthesis. Area reduction is the only solution to make all the 
required SIMD instruction fit into an FPGA. 
 

7. Conclusion 

We have presented the design of an AltiVec SIMD instruction unit for FPGAs. The major 
advantages of designing an AltiVec compatible unit is to be able to directly reuse 
PowerPC-aimed C code, without modifying it, into an FPGA, nor adding bugs, and thus 
reducing development time. We have used optimization techniques like instruction 
specialization and presented a new one called RISCization applying the CISC-to-RISC 
concept to hardware instruction implementation. Impacts of RISCization  on basic signal 
processing algorithms are very interesting: the energy consumption has been reduced by a 
factor ranging from x1.4 up to x2.0 and area has been also reduced by a factor ranging 
from x1.3 up to x1.5 thanks to instruction customization. Current and future works are to 
develop high-level tools to perform an automatic design space exploration of the 
configurations to efficiently implement AltiVec coded applications into an FPGA. 
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