
International Journal of Computer Science and Applications, Technomathematics Research Foundation
2008, Vol. 5, No. 3a, pp 20 - 32

20

ALTIVEC VECTOR UNIT CUSTOMIZATION FOR EMBEDDED SYSTEMS

TARIK SAIDANI

Fundamental Electronics Institute, University of Paris South 11,
91405 , Orsay cedex , France

tarik.saidani@u-psud.fr

http://www.ief.u-psud.fr/~saidani

JOEL FALCOU

Fundamental Electronics Institute, University of Paris South 11,
91405 , Orsay cedex, France

joel.falcou@u-psud.fr

http://www.ief.u-psud.fr/~falcou

LIONEL LACASSAGNE

Fundamental Electronics Institute, University of Paris South 11,
91405 , Orsay cedex, France
lionel.lacassagne@u-psud.fr

http://www.ief.u -psud.fr/~lacas

SAMIR BOUAZIZ

Fundamental Electronics Institute, University of Paris South 11,
91405 , Orsay cedex, France

samir.bouaziz@u-psud.fr

Abstract
Vector extensions for general purpose processors are an efficient feature to address the growing performance
demand of multimedia and computer vision applications. Embedded processors are the most widespread
architectures for such applications. While provid ing sufficient computing power for these applications, they
must take into account power, area and real- time constraints. In this paper, we propose two hardware
optimization techniques to address those constraints: RISCization and instruction set customization.
Experimental results show that those techniques both reduce time and power consumption by up to 50% when
compared to the original ISA.

Keywords
SIMD instruction set; altivec ; vectorization; embedded systems;processor;customization; high performance
image processing; power efficient architectures

 Altivec Vector Unit Customization for Embedded Systems

21

1. Introduction

SIMD extensions were developed to face the growing demand of computing power of
general purpose processors (GPP) coming from multimedia and gaming applications.
They started appearing in 1994 in HP's MAX2 and Sun's VS extensions and can now be
found in most of the GPPs. The vector instruction set exploits the data level parallelism
(DLP) present in this kind of applications. Intel introduced MMX [Peleg (1996)], then
SSE, SSE2 and SSE3 extensions for the Pentium processors, Freescale developed the
Altivec [Diefendorff (2000)] unit on PowerPCs. These extensions contain 128-bit
registers which provides 16-way 8-way and 4-way data level parallelism. The embedded
processors are designed to perform a set of tasks under several constraints on the SoC
(Sytem on Chip) area, execution time and power consumption. Since the workload in
embedded applications become similar to PC applications those constraints become
critical. Computer vision algorithms are a class of data intensive applications that we
consider in this paper. They are characterized by regular operations on large sets of data,
and composed of a combination of convolution kernels and other arithmetic operations.
Image processing applications imply a large memory transaction per computation ratio
and must satisfy real-time constraints in the context of video flow. Therefore, SIMD
extensions are good candidates for improving the performances of those applications.
However, when trying to extend the SIMD paradigm to embedded systems there are
several hardware barriers, in particular for area and power consumption.
In this paper we apply some hardware optimization techniques to make the Altivec unit
fits the embedded systems constraints, when making some assumptions about the
application domain. The first one that we called RISCization consists in reducing the
complexity of the instructions to increase the operating frequency and therefore to
decrease the processing time. The second optimization takes benefit from the versatility
of the Altivec ISA by restricting their functionalities. The remainder of the paper is
organized as follows. Related work is discussed in Section 2. Section 3 provides the
motivation of our work by demonstrating the efficiency of the SIMD units in processing
computer vision typical operators. Section 4 introduces the RISCization concept with
hardware implementation on a FPGA. The instruction customization technique is
described in Section 5, and conclusions are drawn in Section 6.

2. Related Work

A lot of research work has been done in instruction set customization, a co-processor is
automatically synthesized to accomplish a portion of a code where the program spend the
major part of its execution time in [Athanas, P. M. (1993)]. In [Sun (2004)] an automatic
methodology to select custom instructions to augment an extensible processors is
described, in order to maximize its efficiency for a given application program. The
author’s methodology features cost functions to guide the custom instruction selection
process, as well as static and dynamic pruning techniques to eliminate inferior parts of
the design space from consideration. A Dynamic Instruction Set Computer (DISC) has

Saidani et al.

22

been developed in [Wirthlin (1995)], instructions occupy FPGA resources only when
needed and FPGA resources can be reused to implement an arbitrary number of
performance-enhancing application-specific instructions. The SIMD extension case was
treated in [Chouliaras (2008)]. In most of the articles cited above the power consumption
problem was addressed as a parameter for validating the approach, but tuning this power
consumption was not actually considered.

In our paper we provide two optimization mechanisms which aims to reduce the power
consumption in image processing operators.

3. Software SIMD Implementation

3.1. Architecture Presentation

AltiVec is an extension designed to enhance PowerPC processor performance on
applications handling large amounts of data. The AltiVec architecture is based on a
SIMD processing unit integrated with the PowerPC architecture. It introduces a new set
of 128 bit wide registers distinct from the existing general purpose or floating-point
registers. These registers are accessible through 160 new vector instructions that can be
freely mixed with other instructions (there are no restriction on how vector instructions
can be intermixed with branch, integer or floating-point instructions with no context
switching nor overhead for doing so). Altivec handles data as 128-bit vectors that can
contain sixteen 8-bit integers, eight 16-bit integers, four 32-bit integers or four 32-bit
floating-point values. For example, any vector operation performed on a vector char is in
fact performed on sixteen char simultaneously and is theoretically running sixteen times

Fig.1. Altivec vec_msum instruction

 Altivec Vector Unit Customization for Embedded Systems

23

faster as the scalar equivalent operation. AltiVec vector functions cover a large spectrum,
extending from simple arithmetic functions (additions, subtractions) to boolean
evaluation or lookup table solving.
The AltiVec ISA is more complete ISA than Intel SSE2 and SSE3, and provides some
instructions like vec_msum which is very useful for dot product and FIR (Finite Impulse
Response) computations. The synopsis of the instruction d=vec_msum(a; b; c)
[Freescale (1999)] is given in Fig. 1. Eight bit multiplications are performed to provide

intermediate products that are accumulated through a 4-block reduction inside 32-bit
blocks: P = reduc4(A:B). The second stage of the instruction performs an
accumulation of P with a third register
D = reduc4(reduc4(A:B) + C).
From a scalar point of view, the instruction performs sixte en 8-bit multiplications, eight
16-bit and four 32-bit sums, which gives a total of 36 scalar instructions inside a unique
SIMD instruction. The 4-block reduction step makes this instruction well suited for fi lters
whose size is a multiple of 4. One can note that for dot product, a second instruction
vec_sums should be used to reduce the four 32-bit blocks D0;D1;D2;D3 inside one
block (Fig. 2).

3.2. Software Benchmark Results

In order to demonstrate the benefits of vectorizing computer vision codes [Ollmann
(2001)], we compared scalar and SIMD implementations of basic image processing
operators: dot product and FIR. Therefore we performed software benchmarks on the
scalar and SIMD versions of the code. The metric that we used in our experiments is the
number of clock cycles per pixel cpp.

.

²
t Fcpp
N

= . (1)

Where N is the width of a square input image, t the operator execution time in seconds
and F the clock's frequency of the processor in Hertz (1Ghz on the PowerPC G4).
Measuring the cpp to compare the different implementations is a fair comparison, since it

Fig. 2. 4 -block reduction with vec_sums instruction

Saidani et al.

24

does not depend on the processor's frequency. Moreover, cpp is a relevant cache miss
detector. In our benchmark we consider a data size varying from 128x128 to 1024x1024.

The first benchmarked operator is dot product, which operates on two vectors of size N2,
and computes a scalar according to the equation:

² 1

0

. .
N

i i
i

a b a b
−

=

= ∑ . (2)

vector int dot_pr_msum(vector unsigned char *a , vector unsigned char *b, unsigned
int N)
{

unsigned int i;
vector unsigned char X, Y;
vector int s, s_r;
vector int zero_vector_32=(vector int)(0);
s = zero_vector_32;
for(i =0; i<N/16; i++){
 X=vec_ld (0, &a[i]);
 Y=vec_ld (0, &b[i]);
 s = (vector int) vec_msum(X,Y, (vector unsigned int)s);
}
s_r=vec_sums(s ,zero_vector_32);
return s_r;

}

Listing 3 provides a comparison between the scalar and the SIMD version of dot product,
using the dedicated instruction vec_msum. While the gap between the scalar and SIMD

Listing 1. dot product function using vec_msum

Fig. 3. cpp of dot product on PowerPC G4

 Altivec Vector Unit Customization for Embedded Systems

25

implementation is almost the same (? ≅ 12), the speedup varies from x45 for small data
sizes to x4.1 for large ones. We then conclude that the gain provided by vectorization is
limited by the cache size.
The second basic image processing operator that we vectorized is a 4-tap FIR filter:

3

0

(,) (). (,)
k

Y i j f k X i j k
=

= +∑ . (3)

We consider a 4-tap FIR to fully exploit the DLP offered by the 16-byte registers. As we
observed for the dot product, and for the same reasons, the gap between the scalar and
vector implementations is constant (? ≅ 12). Moreover, the speedup varies from x14.9 for
small images to x4.4 for large ones.

4. RISCization

The efficiency of vector units in processing computer vision algorithms being
demonstrated, we can present the hardware optimization techniques that we performed to

make the AltiVec instructions more convenient for embedded architectures. The first one
that we called RISCization consists in replacing a complex SIMD instruction (CISC),
with a set of simpler (RISC) instructions from the same ISA. First, this technique is
implemented in software to see if it changes drastically the time performances of the
algorithm. There are several ways to split the vec_msum instruction into a set of RISC
instructions. For instance, by replacing 8-bit by 16-bit multiplications (16-bitx16-bit
→16-bit) or by replacing 4-block reductions by 4 separate accumulators. The most
simplified equivalent set of instructions is given in 5 and is described below:
(1) the input 8-bit operands A,B are converted into two 16-bit data (low part and high

part).

Fig. 4. cpp of FIR4 on PowerPC G4.

Saidani et al.

26

(2) a 16-bit block wise multiplication is performed: neither overow nor truncation are
necessary since input data are 8-bit wide.

(3) conversion to 32-bit blocks .
(4) 32-bit accumulation.
(5) reduction (using vec_sums) to sum the four 32-bit blocks.
Fig. 6 and Fig. 7 present the best cpp for three CISC and RISC versions. Several versions
have been implemented (For instance with various schemes to replace reduction
instructions.
Only three are presented, one for each multiplication instruction of AltiVec ISA:
vec_msum, vec_mladd and vec_mule/vec_mulo.

vector unsigned char **fir_vec(vector unsigned char** IM_OR, vector unsigned char**
IM_RES, int64 nrl, int64 nrh, int64 ncl, int64 nch, unsigned char*fir, int64 fsize)
{

int64 i,j;
 int k;
 vector unsigned char im_or0,im_or1,im_or, im_res;
 vector unsigned char fir_vector;
 fir_vector.v=(vector unsigned char)(0);
 vector unsigned char dup_vector;
 dup_vector=(vector unsigned char)(0,1,2,3,0,1,2,3,0,1,2,3,0,1,2,3);
 vector unsigned int temp;
 vector unsigned int vector_zero32;
 vector_zero32=(vector unsigned int)(0);
 vector unsigned int acc00,acc01,acc10,acc11;
 vector unsigned short acc0,acc1;
 vector unsigned char res;
 vector unsigned short shifter;
 shifter=(vector unsigned short)(8);
 vector unsigned char permuter;
 permuter=(vector unsigned char)(0,4,8,12,1,5,9,13,2,6,10,14,3,7,11,15);
 for(k=0;k<fsize;k++){
 fir_vector.t[k]=fir[k];
 fir_vector.t[k]=fir[k];
 fir_vector.t[k]=fir[k];
 fir_vector.t[k]=fir[k];
 }
 fir_vector.v=vec_perm(fir_vector.v,fir_vector.v,dup_vector);
 for(i=nrl;i<=nrh;i++){
 for(j=ncl;j<nch;j++){
 im_or0=vec_ld(0, &IM_OR[i][j]);
 im_or1=vec_ld(15,&IM_OR[i][j]);
 im_or=vec_sld(im_or0,im_or1,0);
 acc00=vec_msum(im_or,fir_vector.v,vector_zero32);
 im_or=vec_sld(im_or0,im_or1,1);
 acc01=vec_msum(im_or,fir_vector.v,vector_zero32);
 im_or=vec_sld(im_or0,im_or1,2);
 acc10=vec_msum(im_or,fir_vector.v,vector_zero32);
 im_or=vec_sld(im_or0,im_or1,3);
 acc11=vec_msum(im_or,fir_vector.v,vector_zero32);
 acc0=vec_sr(vec_pack(acc00,acc01),shifter);
 acc1=vec_sr(vec_pack(acc10,acc11),shifter);
 res=vec_pack(acc0,acc1);
 IM_RES[i][j]=vec_perm(res,res,permuter);
 }
 }
 return IM_RES;

Listing 2. FIR Filter vectorization

 Altivec Vector Unit Customization for Embedded Systems

27

• a CISC version with the vec_msum reduction instruction,
• a RISC first version, with the vec_mladd 16-bit multiplication-accumulation

instruction: D = A xB + C,
• a second RISC second version , with only the vec-mule and vec-mulo 8-bit

multiplication (8-bitx8-bit→16-bit) instructions.

For RISC versions, reductions are replaced by a set of additions (vec-add) and
permutations (vec_perm). Obviously the RISC versions are slower than the CISC one
since more complex computing is done at the same throughput (1 instruction/cycle).
However, we can not assert that it is the case on hardware since operating frequency
depends on the instruction complexity.

vector int dot_pr_risc(vector unsigned char *a, vector unsigned char *b,

unsigned int N)
{
 unsigned int i;
 vector unsigned char X,Y;
 vector short A0,A1,B0,B1,zero_vector16;
 vector short P0,P1;
 vector int P00,P01,P10,P11,AC0,AC1,AC,sr;
 vector int zero_vector32=(vector int)(0);
 zero_vector16=(vector short)(0);

Fig. 5. vec_msum RISCization

Saidani et al.

28

 AC=(vector int)(0);
 AC0=(vector int)(0);
 AC1=(vector int)(0);

 for(i=0;i<N/16;i++)
 {
 X=vec_ld(0, &a->v[i]);
 Y=vec_ld(0, &b->v[i]);

 A0=vec_unpackh((vector char)X);
 A1=vec_unpackl((vector char)X);
 B0=vec_unpackh((vector char)Y);
 B1=vec_unpackl((vector char)Y);

 P0=vec_mladd(A0,B0,zero_vector16);
 P1=vec_mladd(A1,B1,zero_vector16);

 P00=vec_unpackh((vector short)P0);
 P01=vec_unpackl((vector short)P0);
 P10=vec_unpackh((vector short)P1);
 P11=vec_unpackl((vector short)P1);

 AC0=vec_add(P00,P01);
 AC1=vec_add(P10,P11);

 AC=vec_add(AC,vec_add(AC0,AC1));
 }

 sr=vec_sums(AC,zero_vector32);
 return sr;

}

Fig. 6. cpp of dot product on PowerPC G4

Listing 3. example code of dot product RISCization

 Altivec Vector Unit Customization for Embedded Systems

29

5. Hardware Implementation

In order to estimate the impact of RISCization, SIMD instructions have been synthesized
on a Virtex4 [Xilinix (2007)] FPGA. RISC and CISC blocks combinations have been
compared through orthogonal criteria like area utilization, running frequency F, power
consumption P and execution time t. While cpp is meaningful for software benchmarks, t
should be preferred in the case of hardware benchmarks. Since the running frequency
depends on the implemented operators, the fastest implementation (with the smallest t) is
not necessarily the one with the smallest cpp. Two assumptions have been made for the
comparison: FPGA and the PowerPC G4 have the same AltiVec instructions latencies
and the FPGA could be interfaced with a memory hierarchy whose specifications (cache
size, associativity, and latencies) would be equivalent to those of PowerPC G4 ones.
Using Xilinx ISE and XPower Estimator tools, power consumptions have been estimated
for each standalo ne SIMD AltiVec instruction (these measures do not take into account
the consumption of the I/O blocks). Tables 1 and 2 present the results for 256x256,
512x512 and 1024x1024 data size.

Table 1. dot product synthesis results.

Version cpp Area % F (MHz) P (Watt) t (ms) E (µJ)
256x256 data
msum 0.44 22.5 151 0.202 0.191 39
mladd 0.61 24.2 256 0.165 0.156 26
mul 0.97 23.5 209 0.110 0.303 33
512x512 data

Fig. 7. cpp of FIR Filter on PowerPC G4

Saidani et al.

30

msum 1.32 22.5 151 0.202 2.292 463
mladd 1.51 24.2 256 0.165 1.545 255
mul 1.78 23.5 209 0.110 2.227 245
1024x1024 data
msum 3.91 22.5 151 0.202 27.154 5485
mladd 3.97 24.2 256 0.165 16.251 2681
mul 4.19 23.5 209 0.110 20.969 2307

Table 2. FIR synthesis results.

Version cpp Area % F (MHz) P (Watt) t (ms) E (µJ)
256x256 data
msum 1.25 20.5 164 0.213 0.499 106
mladd 1.49 21.2 337 0.258 0.290 75
mul 1.53 21.5 337 0.264 0.298 79
512x512 data
msum 1.84 20.5 164 0.213 2.940 626
mladd 2.12 21.2 337 0.258 1.650 426
mul 2.13 21.5 337 0.264 1.658 438
1024x1024 data
msum 1.84 20.5 164 0.213 26.908 5731
mladd 2.12 21.2 337 0.258 13.700 3535
mul 2.13 21.5 337 0.264 13.856 3658

In order to estimate the efficiency of the embedded system, we measure the amount of
energy E = txP required to compute the algorithm. Once the processing speed is enforced
(typically t < 33ms for 30 images/s), the total energy E is the constraint to optimize, not
only the power P. One can note also, that synthesis tools provide the maximum running
frequency. If the overall algorithm implementation is too fast, implying too high power
consumption, the system can be down-clocked. First, if we look at the execution time, we
can see that the CISC version is never the fastest one, but vec_mladd which is a
complexity golden mean between vec_msum and vec_mule/vec_mulo. Gains vary
from x1.2 up to x1.6 for dot product and from x1.7 up to x2.0 for FIR. These results are
very important: from the execution time point of view, a direct implementation into an
FPGA of the classic dedicated and “optimized-for” CISC instruction will lead to a non
optimal implementation.
Second, if we focus on energy, the gains between CISC and RISC version range from
x1.6 up to x2.0 for dot product and from x1.4 up to x1.6 for FIR. That validates our
RISCization approach: usually the fastest implementation is also the most power hungry
one, but it the case of mapping SIMD instruction from a general purpose processor to an
FPGA, this is not the case: RISC implementations are quick and energy efficient!

 Altivec Vector Unit Customization for Embedded Systems

31

6. Instructions Customization

The second hardware optimization that we performed on our kernels is instruction
customization. This technique is complementary to RISCization as it reduces the size of
those instructions used in the implemented operators. Thus it compensates the growth of
instruction number caused by RISCization. Instruction customization reduces the useless
capabilities of versatile instructions. The AltiVec instruction vec_perm (synopsis 8) is
an interesting example. This instruction behaves like a complete crossbar and not only
performs permutations with regular patterns (as SSE2+ instructions can do), but also with
irregular patterns. For a given algorithm or application, only a few set of these
capabilities are useful. For dot product and FIR, the only need is to construct unaligned
vector registers. By specializing, such an instruction, area size and power consumption
can be drastically reduced. Specialization has been applied to the multiply-add operation
vec_mladd. The instruction is split into two instructions: vec_mul that does not exist
in Altivec ISA in 16-bit version, and vec_add
(vec_mladd(A,B,C)=vec_add(vec_mul(A,B),C)).

Table 3. gain provided by customization

Instruction Area Reduction Power
Reduction

vec_sums 32 % 1 %
vec_msum 32 % 3 %
vec_mladd 22 % 3 %
vec_sum4s 30 % 3 %

vec_perm(v1) 56 % 5 %
vec_perm(v2) 35 % 5 %

Fig. 8. AltiVec permutation instruction

Saidani et al.

32

Table 3 presents the area and power consumption reduction provided by instruction
specialization. These results was obtained with a synthesis on a Virtex-4 FPGA. One can
note that power gain is not important because the difference between versions resides in
the logical blocks; these blocks are not great power consumers. However, customization
can significantly reduce area occupation. As SIMD instructions are quite big they can
prevent from completing a synthesis. Area reduction is the only solution to make all the
required SIMD instruction fit into an FPGA.

7. Conclusion

We have presented the design of an AltiVec SIMD instruction unit for FPGAs. The major
advantages of designing an AltiVec compatible unit is to be able to directly reuse
PowerPC-aimed C code, without modifying it, into an FPGA, nor adding bugs, and thus
reducing development time. We have used optimization techniques like instruction
specialization and presented a new one called RISCization applying the CISC-to-RISC
concept to hardware instruction implementation. Impacts of RISCization on basic signal
processing algorithms are very interesting: the energy consumption has been reduced by a
factor ranging from x1.4 up to x2.0 and area has been also reduced by a factor ranging
from x1.3 up to x1.5 thanks to instruction customization. Current and future works are to
develop high-level tools to perform an automatic design space exploration of the
configurations to efficiently implement AltiVec coded applications into an FPGA.

References

[1] Athanas, P.M., Silverman, H.F. (1993): Processor reconfiguration through instruction-set
metamorphosis, IEEE Computer 26(3) pp. 11–18.

[2] Chouliaras, V.A. et al. (2008): Customization of an embedded risc cpu with simd extensions
for video encoding: A case study. Integr, VLSI J. 41(1) pp. 135–152.

[3] Diefendorff, K. et al (2000): Altivec extension to powerpc accelerates media processing .
IEEE Micro 20(2) pp. 85–95.

[4] FreescaleSemiconductor (1999): AltiVec Technology Programming Interface Manual.
[5] Ollmann, I. (2001): Practical altivec strategies: The why, how and when of optimization

success and failure using altivec. Technical report, Apple.
[6] Peleg, A., Weiser, U. (1996): MMX technology extension to the intel architecture. IEEE

Micro 16(4) pp. 42–50.
[7] Sun, F. et al. (2004): Custom-instruction synthesis for extensible processor platforms, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems, 23, pp. 216–
228

[8] Wirthlin, M.J., Hutchings, B.L. (1995): DISC: the dynamic instruction set computer. In
Schewel, J., ed.: Field Programmable Gate Arrays (FPGAs) for Fast Board Development
and Reconfigurable Computing, Proc. SPIE 2607, Bellingham, WA, SPIE – The
International Society for Optical Engineeringpp. 92–103.

[9] Xilinx (2007): Virtex-4 family overview, Technical report, Xilinx.

