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Abstract  
In this paper we examine the use of a matrix factorization technique called 
Singular Value Decomposition (SVD) along with demographic information 
in Item-Based Collaborative Filtering. After a brief introduction to SVD and 
to some of its previous applications in Recommender Systems, we proceed 
with the presentation of two distinct but related algorithms. The first 
algorithm uses SVD in order to reduce the dimension of the active item's 
neighborhood. The second algorithm initially enhances Item-based Filtering 
with demographic information and then applies SVD at various points of the 
filtering procedure. The presentations of both algorithms include a detailed 
step-by-step description and a series of experiments. In both cases the results 
show that a reduction in the dimension of the item neighborhood via SVD, 
either by itself or combined with the usage of relevant demographic 
information, is promising, since it does not only tackle some of the recorded 
problems of Recommender Systems, but also assists in increasing the 
accuracy of systems employing it. 

 
 

1 Introduction 
Recommender Systems were introduced as a computer-based intelligent 
technique that assists people with the problem of information and product 
overload, their aim being to provide efficient personalized solutions in e-
business domains, that would benefit both the customer and the merchant. 
They feature two basic entities: the user and the item. A user who utilizes 
the Recommender System, provides his opinion about past items. The 
purpose of the Recommender System is to generate suggestions about new 
items for that particular user. The process is based on the input provided, 
which is usually expressed in the form of ratings from that user, and the 
filtering algorithm, which is applied on that input. 
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Recommender Systems suffer from a number of fundamental problems that
cause a reduction in the quality of the generated predictions, such as sparsity,
scalability, and synonymy. A number of solutions have been introduced, intending
to solve those problems [1, 2, 3]. We will focus on the case of Singular Value De-
composition which only recently was proposed by various Recommender Systems
researchers as a possible means of alleviating the aforementioned problems. The
first algorithm we present in this paper utilizes SVD as a technique that is able to
effectively reduce the dimension of the user-item data matrix, and then it executes
Item-based Filtering with this low rank representation to generate its predictions.
The second algorithm takes things a step further: It executes SVD to achieve
similar results with the first approach, but at the same time, it enhances the fil-
tering procedure by taking into account relevant demographic data as a source of
additional information.

The subsequent sections are structured as follows: We first introduce the con-
cept of Singular Value Decomposition. Then, we present some Recommender
Systems which have employed SVD in order to improve their performance. We
include a brief discussion of the collaborative filtering algorithm which was utilized
to support our technique, and provide an analysis of our experimental method-
ology, regarding the data set and evaluation metrics. At this point we give a
step-by-step description of our first proposed filtering method. The experimen-
tal work which follows, closes by comparing our technique with the base filtering
algorithm. A similar presentation is included for the second filtering method we
propose: A detailed description of the algorithm is followed by an extended series
of related experiments. We conclude with a summary and possible directions for
future work.

2 Singular Value Decomposition (SVD)

Singular Value Decomposition (SVD) is a matrix factorization technique which
takes an m× n matrix A, with rank r, and decomposes it as follows:

SV D(A) = U × S × V T (1)

U and V are two orthogonal matrices with dimensions m×m and n×n respectively.
S, called the singular matrix, is an m× n diagonal matrix whose diagonal entries
are non-negative real numbers.

The initial r diagonal entries of S (s1, s2, . . . , sr) have the property that si > 0
and s1 ≥ s2 ≥ · · · ≥ sr. Accordingly, the first r columns of U are eigenvectors
of AAT and represent the left singular vectors of A, spanning the column space.
The first r columns of V are eigenvectors of AT A and represent the right singular
vectors of A, spanning the row space. If we focus only on these r nonzero singular
values, the effective dimensions of the SVD matrices U , S and V will become m×r,
r × r and r × n respectively.

An important attribute of SVD, particularly useful in the case of Recommender
Systems, is that it can provide the best low-rank approximation of the original
matrix A. By retaining the first k << r singular values of S and discarding the
rest, which can be translated as keeping the k largest singular values, based on



the fact that the entries in S are sorted, we reduce the dimensionality of the data
representation and hope to capture the important ”latent” relations existing but
not evident in the original representation of matrix A. The resulting diagonal
matrix is termed Sk. Matrices U and V should be also reduced accordingly. Uk is
produced by removing r− k columns from matrix U . Vk is produced by removing
r − k rows from matrix V . Matrix Ak which is defined as:

Ak = Uk × Sk × V T
k (2)

stands for the closest linear approximation of the original matrix A with reduced
rank k. Once this transformation is completed, users and items can be represented
as points in the k-dimensional space.

3 Using SVD in Recommender Systems

SVD, as part of Latent Semantic Indexing (LSI), was widely used in the area of
Information Retrieval [4] in order to solve the problems of synonymy, which is a
result of the many possible ways to express a known concept, and polysemy, which
comes from the fact that most words usually have multiple meanings. Furthermore,
techniques like SVD-updating or folding-in were proposed to alleviate the problem
of updating, which refers to the process of new terms and/or documents being
added to existing matrices [5].

Those ideas were adopted by researchers in the area of Recommender Systems.
Initially, Billsus and Pazzani [6] took advantage of the properties of SVD in their
attempts to formulate collaborative filtering as a classification problem. In their
work they utilize SVD as a dimensionality reduction technique, before they feed
their data matrix, which is now represented in the reduced feature space, into
an Artificial Neural Network (ANN). This ANN, or, as the authors claim, any
alternative Machine Learning algorithm, can then be trained in order to generate
predictions.

GroupLens have also applied SVD in at least 3 distinct cases regarding Recom-
mender Systems: (i) in an approach that reduces the dimensionality of the user-
item space and forms predictions in that reduced space, by not building explicit
neighborhoods at any point of the procedure, (ii) in an approach that generates a
user-neighborhood in the SVD reduced space and then applies normal user-based
collaborative filtering on it, and (iii) in an approach that aims at increasing the
scalability by applying folding-in for the incremental computation of the user-item
model [7, 8].

Finally, Goldberg et al. use Principal Component Analysis [9], a technique very
similar to SVD, in order to optimally project highly correlated data along a smaller
number of orthogonal dimensions. Then, their Eigentaste algorithm clusters the
projected data, being concluded by an online computation of recommendations.

4 The Base Algorithm: Item-based Filtering

In this section we will briefly discuss the filtering algorithm which will be utilized
by the proposed technique. Similarly to User-based Collaborative Filtering, Item-



based Filtering is based on the creation of neighborhoods. Yet, unlike the User-
based Collaborative Filtering approach, those neighbors consist of similar items
rather than similar users [10].

The execution steps of the algorithm are (a) Data Representation of the ratings
provided by m users on n items. This step is based on the construction of an
m× n user-item matrix, R. (b) Neighborhood Formation, which concludes by the
construction of the active item’s neighborhood. Similarities for all possible pairs
of items existing in the data set are computed by the application of the preferred
similarity metrics. Items most similar to the active item, which refers to the item
for which predictions should be generated, are selected for its neighborhood. (c)
Prediction Generation, where final predictions are calculated as a weighted sum of
ratings given by a user on all items included in the active item’s neighborhood.

5 Experimental Methodology

For the execution of our subsequent experiments we utilized the data publicly
available from the GroupLens movie recommender system. The MovieLens data
set consists of 100.000 ratings which were assigned by 943 users on 1682 movies.
Users should have stated their opinions for at least 20 movies in order to be
included. Ratings follow the 1(bad)-5(excellent) numerical scale. Starting from
the initial data set five distinct splits of training and test data were generated.

Several techniques have been used to evaluate Recommender Systems. Those
techniques have been divided by Herlocker et al. [11] into three categories: Predic-
tive Accuracy Metrics, Classification Accuracy Metrics, and Rank Accuracy Met-
rics. The choice among those metrics should be based on the selected user tasks
and the nature of the data sets. We wanted our proposed algorithms to derive
a predicted score for already rated items rather than generate a top-N recom-
mendation list. Based on that specific task we proceeded in the selection of the
initial evaluation metric for our experiments. That metric was Mean Absolute
Error (MAE). It is a statistical accuracy metric which measures the deviation of
predictions, generated by the Recommender System, from the true rating values,
as they were specified by the user. MAE is measured only for those items, for
which a user has expressed his opinion.

6 Algorithm 1: Item-based Filtering Enhanced
by SVD

6.1 Description

We will now describe the steps of how SVD can be combined with Item-based
Filtering in order to make the base algorithm more scalable.

1. Define the original user-item matrix, R, of size m × n, which includes the
ratings of m users on n items. rij refers to the rating of user ui on item ij .

2. Preprocess user-item matrix R in order to eliminate all missing data values.
The preprocessing is described in detail here:



(a) Compute the average of all rows, ri, where i = 1, 2, ..., m, and the
average of all columns, rj , where j = 1, 2, ..., n, from the user-item
matrix, R.

(b) Replace all matrix entries that have no values, denoted by ⊥, with the
corresponding column average, rj , which leads to a new filled-in matrix,
Rfilled−in.

(c) Subtract the corresponding row average, ri, from all the slots of the new
filled-in matrix, Rfilled−in, and obtain the normalized matrix Rnorm.

3. Compute the SVD of Rnorm and obtain matrices U , S and V , of size m×m,
m× n, and n× n, respectively. Their relationship is expressed by: Rnorm =
U ·S·V T .

4. Perform the dimensionality reduction step by keeping only k diagonal entries
from matrix S to obtain a k×k matrix, Sk. Similarly, matrices Uk and Vk of
size m× k and k × n are generated. The ”reduced” user-item matrix, Rred,
is obtained by Rred = Uk·Sk·V T

k , while rrij denotes the rating by user ui

on item ij as included in this reduced matrix.

5. Compute
√

Sk and then calculate two matrix products: Uk·
√

Sk
T , which

represents m users and
√

Sk·V T
k , which represents n items in the k dimen-

sional feature space. We are particularly interested in the latter matrix, of
size k × n, whose entries represent the ”meta” ratings provided by the k
pseudo-users on the n items. A ”meta” rating assigned by pseudo-user ui on
item ij is denoted by mrij .

6. Proceed with Neighborhood Formation which can be broken into two sub-
steps:

(a) Calculate the similarity between items ij and if by computing their
Adjusted Cosine Similarity as follows:

simjf = adjcorrjf =
∑k

i=1 mrij ·mrif√∑k
i=1 mrij

2
∑k

i=1 mrif
2

(3)

where k is the number of pseudo-users, selected when performing the
dimensionality reduction step. We have to note a change between the
Adjusted Cosine Similarity equation utilized in plain Item-based Filter-
ing and here. In plain Item-based Filtering the difference in rating scale
between distinct users was offset by subtracting the corresponding user
average from each co-rated pair of items. In SVD-enhanced Item-based
Filtering, that difference in rating scale was offset during the normal-
ization of the original user-item matrix which yielded matrix Rnorm.

(b) Based on the results from the Adjusted Cosine Similarity calculations
for pairs of items including the active item and a random item, isolate
the set of items which appear to be the most similar to the active item.



7. Conclude with Prediction Generation, achieved by the following weighted
sum:

praj =
∑l

k=1 simjk ∗ (rrak + r̄a)∑l
k=1 |simjk|

(4)

which calculates the prediction for user ua on item ij . It is similar to the
equation utilized by plain Item-based Filtering in that it bases its predictions
on the ratings given by the active user, ua, on the l items selected as the most
similar to active item ij . Yet, it is different in that the user ratings are taken
from the reduced user-item matrix, Rred. Also, we have to add the original
user average, r̄a, back since it was subtracted during the normalization step
of the preprocessing.

6.2 Benefits of Application

A Recommender System running Item-based Filtering with a lower dimensional
representation, as described in the previous section, will benefit in the following
ways:

• The complexity of Item-based Filtering, utilizing the original data represen-
tation, is O(mn2). By reducing the dimension to k, where k << m, the
complexity becomes O(kn2). We can assume that this reduction in com-
plexity will improve the scalability of the system, while both the processing
time and storage requirement should also move down.

• Based on the properties of SVD, any latent relations between users and items
should be located when employing the low rank data representation.

• Before the main part of the algorithm is executed, during its preprocessing
phase, all the empty entries of the user-item matrix are filled. As a result,
once the execution is completed, the n items, taken from the original data
array, have now been rated by all, k, pseudo-users. This means that the
sparsity problem is solved and the achieved coverage for the Recommender
System is always equal to 100%.

Still, we are interested to find out if the benefits from applying Item-based
Filtering on a low-dimensional neighborhood are also extended to the accuracy of
the generated predictions. To achieve that we have set up a number of experiments
which will be discussed in detail in the following paragraphs.

6.3 Experiments

The aim of the experiments which will be described in the following sections is
first to locate the optimal parameter settings for the Item-based enhanced by SVD
filtering algorithm. Once those settings are found and applied, we will compare
the results with the predictions generated by a plain Item-based Recommender
System running also with optimal settings.
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Figure 1. Identifying the best value of k

6.3.1 Locating the optimal value for reduced dimension, k

As mentioned earlier, k refers to the number of singular values retained from the
singular matrix S. As a result, k also corresponds to the rank of the reduced
user-item matrix Rred, and also to the number of pseudo-users which are used,
instead of the actual m users, in order to represent the n items.

The number of dimensions selected for the reduced space representation, as
expressed by the value of k, is significant for the efficiency of the Recommender
System which incorporates this representation for its data. The number of dimen-
sions should be rather small in order to actually lead to an improvement in the
filtering algorithm’s scalability and at the same time to exclude any over-fitting
errors. On the other hand, it should be big enough in order to capture any latent
relations among the users or the items included in the original data matrix, R.

By this experiment we wanted to determine the ideal value of this dimension.
We kept the size of the active item’s neighborhood fixed to 60, and ran our algo-
rithm repeatedly for different values of k, k = {2, 4, 6, 8, 10, 15, 20, 25}. Figure 1
collects the Mean Absolute Errors observed by those runs, averaged over the 5
data splits from the data set.

Our results indicate that applying Item-based Filtering on a neighborhood of
reduced dimension displays a similar behavior to utilizing a low dimensional rep-
resentation in User-based Filtering. The quality of our Recommender System’s
predictions follows the pattern reported for the ML data set in Sarwar [7]. Specif-
ically, at first, the predictions’ accuracy improves as we increase the rank of the
lower dimension space and quickly reaches its peak for k = 6. For any further
increase in the rank, the results keep getting worse. It appears that the size of
the data set and its sparsity allow for existing latent relations among items to be
discovered for rather low rank values, while the over-fitting of the data is evident
when the value of k increases. Consequently, in our subsequent experiments we
will utilize a fixed value of k = 6.



0.791

0.792

0.793

0.794

0.795

0.796

0.797

0.798

0.799

0.8

0.801

0.802

10 20 30 40 60 80 100 120 140

M
A

E�

neighborhood size

Figure 2. Identifying the best neighborhood size

6.3.2 Locating the optimal value for the neighborhood size

As reported in previous work [12], the size of the neighborhood greatly affects
the behavior of Collaborative Filtering algorithms. It is a common trend for such
algorithms to show an initial improvement in accuracy, as the neighborhood size
increases, reach their maximum performance for a specific threshold, and remain
stable or show a slight decline after that threshold.

For our experiments, we kept the dimension of the lower rank representation
fixed to 6, retaining the ideal value for k as recorded in the preceding section, and
varied the size of the active item’s neighborhood, neigh-size={10-140}. The errors
observed from the runs of our algorithm under those settings, averaged over the 5
data splits of the data set, are collected in Figure 2.

Other researchers have reported that the ideal number of neighbors in a collab-
orative filtering algorithm is data set dependent [7]. Furthermore, experimental
results, involving neighborhoods of varying sizes [12], have indicated that Item-
based Filtering reaches its peak performance for quite smaller neighborhoods than
those required for similar experiments in User-based Filtering. In that sense, the
behavior recorded in Figure 2 is quite interesting. The accuracy of Item-based
Filtering, with its original user-item matrix reduced by SVD, starts with a rather
low error value for a neighborhood including 10 items, and gets steadily worse
for neighborhoods whose size continuously increases, concluding with a maximum
size of 140 items. As a result, according to the findings of this experiment we can
assume that a neighborhood including only 10 items, which are the most similar
to the active item, is able to generate the most accurate predictions.

6.3.3 Comparing Item-based Filtering enhanced by SVD with plain
Item-based Filtering

Once the optimal settings for our algorithm were located, we were able to proceed
with our final experiment. The purpose of this experiment was to evaluate the ac-
curacy of Item-based Filtering, when utilizing a low-dimensional neighborhood, by
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Figure 3. Comparing Item-based Filtering enhanced by SVD with plain Item-based
Filtering

Table 1. Average MAEs for both neighborhood dimensions
high-dimensional low-dimensional

Item-based Item-based

MAE 0.83987391 0.79658809

contrasting it with Item-based Filtering employing the original, high-dimensional
neighborhood. The parameters in both implementations were set for optimal pre-
dictions.

Figure 3 includes the Mean Absolute Errors for high (ib) and low (svd-ib) di-
mensions, as observed for each of the 5 data splits of the data set. These error
values are then averaged and Table 1 records the final results for both implemen-
tations.

From both the preceding figure and table, we can conclude that applying Item-
based Filtering on the low-rank neighborhood, provides a clear improvement over
the higher dimension neighborhood. The interesting part is that this improvement,
owed to the low-rank representation, is not limited only to the solution of the
sparsity problem, or to the improvement of the scalability of the Recommender
System. This improvement can also be measured by a considerable increase in the
values of the achieved accuracy.

7 Algorithm 2: Applying SVD on demographi-
cally enhanced Item-based Filtering

Our second algorithm, which we call IdemSvd, picks Item-based Filtering as its
starting point, while taking advantage of SVD and item demographic information
during its execution. The sections that follow provide a description of 4 distinct
implementations of IdemSvd (I-Demog, I-Rsvd, I-Dsvd and I-2svd). Each imple-
mentation incorporates a different level of SVD and demographic data involvement



in the filtering procedure. Next comes a detailed experimental section. The ef-
ficiency of the implementations is tested and contrasted, not only against each
other, but, also, against the selected base algorithm, Item-based CF.

7.1 Description

We will now present the general steps of how SVD and demographic data can be
incorporated in multiple points of Item-based Filtering in order to enhance it.

• Step 1a: Construct demographic vectors for the m users and n items that
participate in the recommendation process. The information required for
those vectors can be usually found in the utilized collaborative filtering data
sets, like MovieLens and EachMovie. Once constructed, the demographic
vectors are collected in array Di.

• Step 1b: At this point we have to select one of two possible scenarios:

– Case 1: Leave the array of demographic vectors, Di, intact (cases of
implementations I-Demog and I-Rsvd), or,

– Case 2: Perform SVD on the array of demographic vectors. (cases of
implementations I-Dsvd and I-2svd)
After applying SVD on item demographic array Di, where Di = Udi·Sdi·V dT

i ,
perform dimensionality reduction by keeping only the k biggest singular
values of Sdi. This will lead to a “reduced” item demographic array
Di,k, where Di,k = Udi,k·Sdi,k·V dT

i,k. Consequently, Di,k collects the
n “reduced” item demographic vectors, each of which is composed by
k pseudo-features. Meanwhile, the matrix product Udi,k·

√
Sdi,k

T
rep-

resents items with the help of those k-rank pseudo-features.

• Step 2: Proceed with Data Representation which concludes with the con-
struction of the initial user-item matrix, R, of size m× n.

• Step 3: Resume with the Neighborhood Formation. Once again, we have to
select one of the following possible ways:

– Case 1: Neighborhood Formation without SVD (cases of implementa-
tions I-Demog and I-Dsvd).
Specifically, the similarity between the active item, ij , and a random
item, if , can be evaluated by utilizing the correlation metric of choice,
which in the case of Item-based Filtering is the Adjusted Cosine Simi-
larity:

simjf = adjcorrjf =
∑l

i=1 (rij − r̄i)(rif − r̄i)√∑l
i=1 (rij − r̄i)

2 ∑l
i=1 (rif − r̄i)

2
(5)

The ratings, rij and rif , which appear in eq. 5 come from the original
user-item matrix, R. Also, since no pre-processing regarding R has
taken place, we are required to subtract the mean user rating, r̄i, to
atone for the different rating behaviors.



Neighborhood formation for the active item concludes by a selection of
the h items most similar to ij , according to their correlation values.

– Case 2: Neighborhood Formation with SVD. (cases of implementations
I-Rsvd and I-2svd).
Specifically, pre-process array R in order to generate Rnorm, which in-
cludes no empty slots. Apply SVD on Rnorm, where Rnorm = U ·S·V T ,
and perform the dimensionality reduction step, by keeping the l largest
singular values of S. This will generate a “reduced” user-item matrix,
Rred, where Rred = Ul·Sl·V T

l . At the same time, the matrix product√
Sl·V T

l represents the n items in the l-dimensional space.
rrij denotes the rating of user ui on item ij , as included in the reduced
matrix, Rred, while

√
Sl·V T

l features the “meta” ratings, mrij , assigned
by the l pseudo-users on the n items.
At this point, the similarity between the active item, ij , and a ran-
dom item, if , can be evaluated by calculating their Adjusted Cosine
Similarity:

simjf = adjcorrjf =
∑l

i=1 mrij ·mrif√∑l
i=1 mrij

2
∑l

i=1 mrif
2

(6)

One can note that there are two important differences from plain Ad-
justed Cosine Similarity: (i) we are utilizing the “meta” ratings of the
l pseudo-users on items ij and if , and, (ii) we do not need to subtract
the mean user ratings in order to offset the different rating behaviors
of the users, since that normalization was done in the pre-processing of
the user-item matrix.
Neighborhood formation for the active item concludes by a selection of
the h items most similar to ij , according to their correlation values.

• Step 4: Calculate the Demographic Correlation between the active item,
ia, and each of the members of its neighborhood, ii, by computing their
corresponding vector similarities:

dem corai = vect sim(
−→
ia ,
−→
ii ) =

−→
ia · −→ii

||−→ia ||2 ∗ ||−→ii ||2
(7)

Depending on the choices made in Steps 1b and 3, there exist 4 possible
implementations of the general algorithm, which are summarized in Table 2.
They differ in whether the selected pairs of items were taken from the re-
duced or the original user-item matrix, and in whether reduced or original
demographic vectors were utilized for the calculations of the demographic
correlations.

• Step 5: Calculate the Enhanced Correlation, enh corai, for every pair of the
form {ia, ii}, where ia is the active item and ii is a member of its neighbor-
hood.

enh corai = α ∗ rat corai + β ∗ dem corai

+ γ ∗ (rat corai ∗ dem corai)
(8)



Table 2. Different levels of SVD application in Demographic Correlation calcula-
tions

Case SVD on SVD on
demographic array D user-item matrix R

I-Demog no no
I-Dsvd yes no
I-Rsvd no yes
I-2svd yes yes

rat corai and dem corai represent the ratings-based and the demographic
correlation between active item ia and neighborhood member ii, while α, β
and γ are flags that define the participation of each of the three components.

• Step 6: Proceed with the final step of the recommendation procedure, which
is Prediction Generation.

In order to predict the rating of user uq on active item ia, we proceed with
one of the following equations. The first equation is selected for the imple-
mentations when no SVD was applied on the user-item matrix R (I-Demog,
I-Dsvd).

idem dsvd prqa =
∑h

k=1 enh corak ∗ rqk∑h
k=1 |enh corak|

(9)

We note that in this equation, the utilized ratings, rqk are taken from the
original user-item matrix, R.

A second equation is selected for the implementations where SVD was ap-
plied on the user-item matrix R (I-Rsvd, I-2svd).

idem 2rsvd prqa =
∑h

k=1 enh corak ∗ (rrqk + r̄q)∑l
k=1 |enh corak|

(10)

We note that for this formula, we have utilized the user ratings, rrqk, from
the reduced user-item matrix, Rred. We also had to add back the original
mean user rating, r̄q, which was subtracted in the pre-processing of R.

Both approaches differ slightly from the one adopted by classic Collabora-
tive Filtering algorithms in that they replace the ratings-based correlation,
rat corak, between the active item, ia, and any of the members of its neigh-
borhood, ik, by their enhanced correlation, enh corak. It is obvious that the
enhanced correlation, as computed in the previous step, possibly incorpo-
rates the effects of SVD on the demographic vectors, via the demographic
correlations, and/or on the user-item matrix, via the ratings-based correla-
tions.



Table 3. Brief Description of I-Demog Implementations
flags enhanced correlation

item-based α = 1, β = 0, γ = 0 enh cor = adj cor
I-Demog1 α = 0, β = 0, γ = 1 enh cor = adj cor ∗ dem cor
I-Demog2 α = 1, β = 0, γ = 1 enh cor = adj cor + adj cor ∗ dem cor
I-Demog3 α = 1, β = 1, γ = 1 enh cor = adj cor + dem cor + adj cor ∗ dem cor
I-Demog4 α = 1, β = 1, γ = 0 enh cor = adj cor + dem cor
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Figure 4. Comparing different implementations of I-Demog with plain Item-based
Filtering

7.2 Experiments

7.2.1 Experiments with I-Demog: Demographically enhanced Item-
based filtering without SVD

I-Demog can be described as an attempt to enhance the performance of Item-
based Filtering, by taking advantage of demographic information regarding items.
Such demographic information can be found in widely used collaborative filtering
data sets. It is also present in the GroupLens data set, which we selected for our
experiments.

For the experiments that follow, a number of distinct implementations of I-
Demog have been tested. These implementations, distinguished by the values
of the enhanced correlation flags, along with the resulting enhanced correlation
equations, are gathered in Table 3. As we can see, plain Item-based filtering can
be viewed as a sub-case of I-Demog, resulting from it after the assignment of the
appropriate values to the flags: α = 1, β = 0 and γ = 0.

Figure 4 compares the Mean Absolute Errors (MAE) collected from our I-
Demog implementations (i-demog1&2&3&4) and Item-based Collaborative Fil-
tering (item-based), for neighborhoods with varying sizes. Based on this figure,
I-Demog3 and I-Demog4 display the best overall accuracy, clearly outperform-
ing not only the rest of the demographically enhanced I-Demog implementations
but, most importantly, plain Item-based Filtering. We pick I-Demog4, which sets
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Figure 5. IdemSvd-Dsvd: Identifying the best neighborhood size

α = 1, β = 1 and γ = 0 in its enhanced correlation equation (eq. 8), as the single
best I-Demog implementation. Therefore, this particular combination of enhanced
correlation flags will be utilized in the subsequent experiments, which intend to
test whether I-Demog can be enhanced by the application of SVD at various points
of the filtering procedure.

7.2.2 Experiments with IdemSvd-Dsvd: Applying SVD only on the
demographic matrix

IdemSvd-Dsvd takes I-Demog and tests its behavior once SVD is applied on the
matrix of the demographic vectors. The following experiments intend to, first,
identify the optimal settings regarding the size of the neighborhood and the value
of k, and then to compare our approach, optimally set, with the best predictions
of plain item-based filtering.

Identifying the optimal neighborhood size for IdemSvd-Dsvd
It has been shown [10] that the size of the item neighborhood plays an important
role in the recommendation procedure. The purpose of our first experiment was to
locate the optimal neighborhood size to be utilized in subsequent experiments. To
achieve that, we kept the value of k fixed to 6, where k corresponds to the number
of dimensions retained for the demographic vectors, while setting the enhanced
correlation flags, from eq. 8, to the values which yielded the most accurate predic-
tions, according to reported experiments [13]: α=1, β=1, γ=0. At the same time,
we varied the size of the neighborhood, neigh-size={20-140}. Figure 5 depicts the
generated Mean Absolute Errors, averaged over all 5 data splits.

From this figure we can observe that after an initially rapid and afterwards
smoother improvement, the accuracy reaches its optimal value for a neighborhood
of 80 items. For sizes bigger than that, the accuracy remains, in average, mostly
unchanged or slightly worse. As a result, the rest of our experiments were executed
with a neighborhood set to include 80 items.
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Identifying the optimal value of k for IdemSvd-Dsvd
The second experiment’s purpose was to identify the best value of k, which corre-
sponds to the number of pseudo-features to be retained by the item demographic
vectors after the application of SVD. As a result, we set the neighborhood size
to the optimal values found by the previous experiment, assigned the appropriate
values to the enhanced correlation flags (α=1, β=1, γ=0), and varied only the
values of k, k={1,2,4,6,8,10,12}. The generated Mean Absolute Errors, averaged
over the 5 data splits, are displayed in Figure 6.

Without forgetting that the original item demographic vectors include 18 dis-
tinct features, expressing the genres of the corresponding movies, the behavior of
the line in Figure 6 can be considered as rather surprising: it shows that, on aver-
age, only 2 demographic features can describe the item in mind adequately. This
number is significantly lower than the 18 original features. Furthermore, there was
a single data split which yielded its best accuracy for k=1.

Based on these observations, we can assume that the demographic features,
included in the utilized data set, provide information about the items which ap-
pear to be quite similar or, even, overlapping. Consequently, and by taking into
account the resulting improvement in prediction accuracy, their merging should
be recommended.

Comparing IdemSvd-Dsvd with plain Item-based Filtering
Having identified the optimal parameter settings for k and the size of the item
neighborhood, we can utilize those values in an initial comparison where the pre-
dictions by IdemSvd-Dsvd will be contrasted against those generated by plain
Item-based Filtering. For the latter method, optimal parameter settings were also
considered.

From figure 7, which includes the Mean Absolute Errors for IdemSvd-Dsvd and
plain Item-based Filtering as observed for each of the 5 data splits, we can conclude
that demographically enhanced Item-based Filtering, having its demographic vec-
tors reduced by SVD, does indeed provide a considerable accuracy improvement
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Figure 7. Comparing IdemSvd-Dsvd with plain Item-based Filtering

over plain Item-based Filtering. It is in our intentions to find out which part of this
improvement is attributed merely to the participation of the demographic vectors,
and which part is owed to the dimensionality reduction applied on them.

7.2.3 Experiments with IdemSvd-Rsvd: Applying SVD only on the
user-item matrix

IdemSvd-Rsvd attempts to improve on I-Demog by applying SVD on the user-item
matrix. The following experiments intend to, first, identify the optimal settings
regarding the size of the neighborhood and the value of k, and then to compare
our approach, optimally set, with the best predictions of plain item-based filtering.

Identifying the optimal neighborhood size for IdemSvd-Rsvd
The purpose of this experiment was to identify the best item neighborhood size
before contrasting it with plain Item-based Filtering. To achieve that, we had
to keep the value of k, corresponding to the low rank user-item matrix, fixed to
6, while setting the enhanced correlation flags according to the values reached in
Section 7.2.1. At the same time, we varied the size of the item neighborhood, neigh-
size={10-140}. Figure 8 displays the generated Mean Absolute Errors (MAEs),
averaged over all 5 data splits.

The MAE line in Figure 8 does not follow the behavior commonly detected in
similar collaborative filtering experiments, and illustrated in Figure 5, according
to which the accuracy improves as the neighborhood size increases, and remains
stable or shows a slight decline after surpassing a certain threshold. In the case
of IdemSvd-Rsvd, the accuracy starts with a low error value for a neighborhood
including 10 items. Then it gets steadily worse for neighborhoods whose size con-
tinuously increases, until reaching the maximum size of 140 items. Therefore, the
rest of our experiments in this section were executed by defining a neighborhood
of 10 items.

Identifying the optimal value of k for IdemSvd-Rsvd
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Figure 9. IdemSvd-Rsvd: Identifying the best value of l

Our second experimental step involved trying different values of k, aiming to iden-
tify the one that would lead to the best accuracy. The GroupLens data set includes
943 distinct users, and k corresponds to the pseudo-users retained after applying
SVD in order to reduce the dimensions of the original user-item matrix.

To initiate this experiment we set the neighborhood to its optimal size, ac-
cording to the previous experiment, and assigned the appropriate values to the en-
hanced correlation flags. We only varied the values of k, k={1,2,4,6,8,10,12,14,16}.
The generated Mean Absolute Errors (MAEs), averaged over the 5 data splits, are
displayed in Figure 9.

For a better understanding of the line in Figure 9 we can view it in correlation
with the same experiment in IdemSvd-Dsvd (Figure 6). The demographic matrix,
Di, includes only 18 features, and as a result, in IdemSvd-Dsvd we were able to
to reach an optimal accuracy value by retaining only 2 pseudo-features. In the
case of IdemSvd-Rsvd, the matrix we are trying to reduce includes a considerably
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Figure 10. Comparing IdemSvd-Rsvd with plain Item-based Filtering

larger number of users (943>>18). Thus, it is natural to require a comparatively
bigger number of pseudo-users in order to capture a behavior which approximates
optimally the behavior of the original matrix. Specifically, as shown from the
figure, a value of k equal to 14 provides the best system accuracy.

Comparing IdemSvd-Rsvd with plain Item-based Filtering
We have now identified the optimal parameter settings for k and the size of the
item neighborhood. We can apply those values on IdemSvd-Rsvd and compare the
generated predictions with those produced by plain Item-based Filtering, when
also optimally tuned.

The obvious conclusion from Figure 10, which includes the Mean Absolute
Errors for IdemSvd-Rsvd and plain Item-based Filtering as observed for each of
the 5 data splits, is that demographically enhanced Item-based Filtering, with
its original user-item matrix reduced by SVD, does indeed provide a considerable
accuracy improvement over plain Item-based Filtering. With further experiments
we intend to specify how these results fare against other approaches which feature
demographically enhanced Item-based Filtering, but allow SVD to affect different
aspects of their filtering process.

7.2.4 Experiments with IdemSvd-2svd: Applying SVD on both demo-
graphic and user-item matrix

IdemSvd-2svd can be characterized as demographically enhanced Item-based Fil-
tering, which has both its demographic and user-item matrix reduced by SVD. The
corresponding experiments include an additional step, when contrasted to those on
IdemSvd-Dsvd and IdemSvd-Rsvd, since the parameters we have to tune before we
compare this approach against plain item-based filtering, include (i) the size of the
neighborhood, (ii) the value of k, which represents the dimensions retained after
applying SVD on the user-item matrix, and (iii) the value of l, which represents
the dimensions retained after applying SVD on the demographic vectors.
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Identifying the optimal neighborhood size for IdemSvd-2svd
In the past two sections we tested the effect of a neighborhood size change for two
implementations of IdemSvd (IdemSvd-Dsvd and IdemSvd-Rsvd), which are similar
in that they apply SVD on a single point of the filtering procedure, but differ in
that point of application. The experimental results were completely opposite. We
could now run the same experiment on a filtering approach which applies SVD
on two points of the procedure and observe its behavior. To achieve that, we set
the values of k and l to 14 and 2 respectively, and only varied the size of the
item neighborhood (neigh-size={10-200}). Figure 11 displays the generated Mean
Absolute Errors, averaged over the 5 data splits.

The behavior of IdemSvd-2svd, as defined by the line in Figure 11, differs
from what reported for plain Item-based Filtering, and also by the corresponding
experiment on IdemSvd-Dsvd (Figure 5). The changes in the size of the neighbor-
hood affect the system’s accuracy in a way directly comparable to IdemSvd-Rsvd,
which applies SVD only on the user-item matrix. Specifically, the lowest error
values were observed for the smallest neighborhood size tested in our experiments
(neigh-size=10). As the size of the neighborhood was getting bigger, until reaching
its maximum size (neigh-size=200), the recorded error kept increasing. Therefore,
the neighborhood selected for the subsequent experiments includes 10 items.

Identifying the optimal value of k for IdemSvd-2svd
Our second experiment with IdemSvd-2svd involved testing the algorithm for dif-
ferent values of k, which expressed distinct low rank representations of the original
user-item matrix. According to the results of the previous experiment, we defined
an optimal neighborhood of 10 items. We also assigned to l a random value of
2. We only varied the values of k, k={1,2,4,6,8,10,12,14,16,18}. The generated
Mean Absolute Errors (MAEs), averaged over the 5 data splits, are displayed in
Figure 12.

In a result far from surprising, and similarly to the observations included in the
previous experiment, the behavior of IdemSvd-2svd, when varying the value of k,
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Figure 12. IdemSvd-2svd: Identifying the best value of k

appears to be very close to the one reported by the same experiment in IdemSvd-
Rsvd (Figure 9). In both cases we are defining the number of pseudo-users to
retain, out of the 943 existing in the initial user-item matrix. Furthermore, the
behavior of the line, which depicts a decrease of MAE as the value of k increases,
makes sense: it only seems natural that a bigger k would allow for a better approx-
imation of the original user-item space. According to these experimental results
any value in the range of k={14-18} can be assigned to k without considerable, if
any, accuracy loss.

Identifying the optimal value of l for IdemSvd-2svd
With our third IdemSvd-2svd experiment, we wanted to identify the optimal num-
ber of pdeudo-features to retain from the original, 18-featured demographic vectors,
expressed by l. We utilized the optimal values for k and the size of the neighbor-
hood, as obtained from the past 2 experiments, and only varied the values of l,
l={1,2,4,6,8,10,12,14,16}. Figure 13 depicts the generated Mean Absolute Errors,
averaged over all 5 data splits.

We can easily conclude that there is no specific pattern followed by the MAE
line: the error moves up and down repeatedly, reaching its lowest value for l=8.
This behavior is different from the one in Figure 6, which depicted the error of the
same experiment in IdemSvd-Dsvd. We should also note that the effect of l on
the system accuracy is rather trivial. Any performance variation caused by it, is
limited to the third decimal place of the MAE values, allowing us to describe it as
a fine-tuning of accuracy results which were achieved by the previous experiments.

Comparing IdemSvd-2svd with plain Item-based Filtering
At this point we have identified the optimal parameter settings for k, l, and the
size of the item neighborhood. We will apply those values on IdemSvd-2svd in
an attempt to compare its optimal predictions against those generated by plain
Item-based Filtering. For the latter method, optimal parameter settings were also
utilized.

Figure 14 records the Mean Absolute Errors of IdemSvd-2svd and plain Item-
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Figure 14. Comparing IdemSvd-2svd with plain Item-based Filtering

based Filtering for each of the 5 data splits. Based on these MAE lines we can claim
that demographically enhanced Item-based Filtering, with SVD applied to both
user-item and demographic matrices, does indeed provide a considerable accuracy
improvement over plain Item-based Filtering.

7.2.5 Overall comparison of IdemSvd implementations

The aim of this final section was to collect the most accurate results gener-
ated by the 4 IdemSvd implementations (I-Demog, IdemSvd-Dsvd, IdemSvd-Rsvd
and IdemSvd-2svd) and utilize them in an overall comparison. According to the
methodology followed in preceding sections, we selected plain Item-based CF as
our base algorithm.

Figure 15 depicts the lowest Mean Absolute Errors which were reported in each
of these cases, for the 5 splits of the data set. The averages of these MAEs, which
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Figure 15. Comparing all IdemSvd implementations

Table 4. Best IdemSvd MAEs averaged over 5 data splits

item-based i-demog idemsvd-dsvd idemsvd-rsvd idemsvd-2svd

MAE 0.82843656 0.79189590 0.77840260 0.77523445 0.77376098

represent a single best mean accuracy value for each participating approach, are
included in Table 4. Table 5 collects the corresponding execution costs. We note
that m is the number of users, n is the number of items, and k is the number of
pseudo-users retained after the application of SVD, where k << n.

In the cases of item-based and i-demog, there is no application of SVD. At the
same time, and contrary to what happens in the user-based approaches, the item-
item correlation matrix is a lot less volatile. This means that we can compute the
item correlations in less frequently intervals without affecting the overall perfor-
mance of the system, which allows us to assign them to the off-line component.
This move places an mn2 cost under the off-line column. The on-line component
can be now dedicated solely to prediction generation, which in the worse case in-
duces an n2 cost. Still, this cost is, on average, reduced to nl, where l corresponds
to the size of the item neighborhood, which is usually l << n.

Regarding the 3 remaining methods (idemsvd-dsvd, idemsvd-rsvd and idemsvd-
2svd), they all involve the application of SVD. The additional cost is equal to

Table 5. Off and On-line costs for all 5 methods
Off-line On-line

item-based mn2 n2

i-demog mn2 n2

idemsvd-dsvd [m3]+[n2m] n2

idemsvd-rsvd [m2n + m3]+[n2k] n2

idemsvd-2svd [2(m2n + m3)]+[n2k] n2



m2n + m3 for IdemSvd-Rsvd and equal to 2(m2n + m3) for IdemSvd-2svd, since
SVD is applied twice. The situation is a bit more complicated for IdemSvd-Dsvd:
we apply SVD on an m×18 matrix, of m items over 18 item demographic features.
This leads to a cost of m2n + m3 = 18m2 + m3 = m3.

For the cases of IdemSvd-Rsvd and IdemSvd-2svd, there are only k pseudo-
users involved in the item similarities calculations after the application of SVD,
which means that the corresponding costs would be reduced to n2k. Still, and
contrary to what discussed in user-based approaches, this reduction stays at the
off-line component, and cannot be fully realized. The same cost remains at n2m
for IdemSvd-Dsvd, where no SVD is applied on the user-item matrix.

In the case of the GroupLens data set, which we utilized for our experiments,
m=943 and n=1682. Therefore, we can assume that m and n are of the same
order and adjust the execution costs of IdemSvd-Rsvd and IdemSvd-Dsvd to ap-
proximately n3, and of IdemSvd-2svd to 2n3. The on-line costs could be adapted
accordingly.

Bearing in mind the accuracy results from Figure 15 and Table 4, along with
the execution costs from Table 5, we can reach the following conclusions:

• Plain Item-based Collaborative Filtering has the lowest off-line execution cost,
along with I-Demog. Still, it cannot be recommended since its accuracy ranks
at the last place among those tested.

• I-Demog’s off-line cost is equal to that of plain Item-based CF, but its accu-
racy is significantly improved. Thus, we should prefer it in cases where we
cannot handle the burden placed on the off-line component by the execution
of SVD.

• Comparing the 2 filtering approaches which apply SVD once during the
filtering procedure, we should select IdemSvd-Dsvd if we care for the lowest
off-line cost, and IdemSvd-Rsvd if we prefer the best accuracy.

• IdemSvd-2svd may be the method with the lowest overall error, but, at the
same time, it incurs the biggest off-line costs. Thus, among all approaches
which apply SVD, we should prefer IdemSvd-2svd only when those off-line
costs won’t matter when compared to the improvement in the system’s per-
formance, or when we are able to calculate the off-line component at the
least frequent time intervals.

• Conclusively, and contrary to the results reported after executing the same
experiments in User-based CF, we can claim that SVD can successfully en-
hance the I-Demog algorithm. All 3 approaches we tested lead to a perfor-
mance improvement over plain Item-based CF or I-Demog. Thus, we can
recommend any of them under different circumstances, depending on the
priorities we have set regarding the frequency of execution of the off-line
component, the time which can be designated for the off-line component,
and the prediction accuracy which can be achieved.



8 Conclusions and Future Work

In the past, Singular Value Decomposition was mainly combined with User-based
Collaborative Filtering, proving to be an effective solution for recorded problems of
Recommender Systems such as scalability and sparsity. By this work we extended
the application of SVD to Item-based Collaborative Filtering. We gave a detailed
description of the way SVD can be utilized in order to reduce the dimension of
the user-item representation, and, afterwards, how this low-rank representation
can be employed in order to generate item-based predictions. We also tested
its effectiveness when combined with data other than the common user ratings on
items, by utilizing it in collaboration with demographic information. Our proposed
methods can be described as filtering algorithms which utilize SVD in order to
reduce the dimensions of the original user-item and/or demographic matrix, while,
at the same time drawing supplementary information possibly available in related
demographic data.

A number of experiments were set up to check how our proposed algorithms
fare against Item-based filtering, running in collaboration with the original data
representation. The results in both cases showed that low-dimension Item-based
Filtering not only alleviates problems like scalability or sparsity of the data, but
also proves to be a more accurate recommender than the original Item-based Fil-
tering. Furthermore, we noted that the inclusion of related demographic data
proved capable of leading to a recommender system which further improves its
effectiveness, when compared to Item-based Filtering merely enhanced by SVD.

Keeping these promising results as our starting point, it is in our intentions to
experiment with Principal Component Analysis, as a viable alternative to SVD.
We view it as a second method which can possibly enhance the filtering procedure,
by assisting in dimensionality reduction. Furthermore, Artificial Neural Networks
employing pseudo-SVD as a possibly simpler, faster and less costly solution, would
be an interesting alternative that we can compare our algorithm against.
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