
International Journal of Computer Science & Applications © 2004 Technomathematics Research Foundation
Vol. I, No. II, pp. 76 - 95

A*: Algebra for an Extended Object/Relational

Model

S. Nait Bahloul(1), Y. Amghar(2), M. Sayah(1)
(1) Département Informatique,- Faculté des Sciences - Université Es-Sénia

Bp 1524 El Ménouar Oran 31000 - Algerie
 (2)INSA de Lyon – LIRIS FRE 2672 CNRS,

7 avenue Jean Capelle. 69621, Villeurbanne – France.

Abstract

The object relational data model presents both the advantage of Codd's relational calculus power
and the characteristics of the object orientation. Two major approaches have been adopted to
satisfy the requirements of new databases applications. A first approach integrates the object
characteristics into the new data models with the specification of data constraints and the
definition of interrogation language. The second one, called evolutionary approach, keeps Codd's
data model enriching with adequate concepts for the coverage of current database applications. In
this approach and comparatively with studies presented by Melton, Date and Darwen have
proposed the foundations of the object relational model. So, A-algebra consisting of first order
logic operators has been defined to express various classes of queries in object relational database.
To contribute to the improvement of relational/object models and agebra this paper presents an
extension of object relational model to new types generated by operators and the related A*-
algebra. These operators, called Op, offer a means to specify domains as functions and permit
consequently to increase the data model expressiveness. To support this extension, we propose a
new data query language, or more precisely a logical data calculation A* as an adapatation of the
A-algebra. Our A*-algebra contains algebraic operators which are able to support this new
extension.

Keywords: Model, Object relational, Database, Models, Algebra, Extension, Operator, A*.

1. Introduction

The object relational data model [1,2,3] presents both the advantage of Codd's relational calculus
power [5] and the characteristics of the object orientation [6,10]. Two major approaches have
been adopted to satisfy the requirements of new databases applications. A first approach widely
illustrated in [3,6,13] integrates the object characteristics into the new data models with the
specification of data constraints and the definition of interrogation language. This approach is still
considered as important research area. The second one [2,16], called evolutionary approach, keeps
Codd's data model enriching with adequate concepts for the coverage of current database
applications. In this approach and comparatively with studies presented by Melton [14], Date and
Darwen have proposed in [1,2] the foundations of the object relational model. So, A-algebra
consisting of first order logic operators has been defined to express various classes of queries in
object relational database.

Database management systems [7] had to deal with complex, heterogeneous, temporal and
available data on many sites. Two major tendencies have born to meet the new requirements of
database applications: the object oriented database approach [8,9,10,11] and the object /relational
database approach [1,2,3,4]. The object/relational database approach has to preserve inherent
advantages of the relational model, which offers two language categories: an algebraic language

S. Nait Bahloul, Y. Amghar, & M. Sayah 77

based on relational algebra and a relational calculation language based on the logic of first order.
The logical aspect of the relational calculation allows the user to specify a query in a declarative
way. In particular, the user does not need to know how data are physically stored in the database.
Besides, relational algebra shows more easily some equivalencies between the algebraic language
expressions. The power of language expression is an important question. The limits of relational
algebra expressiveness are well known. One of examples is the operator of transitive closure of a
relation that cannot be expressed with relational algebra operators. Relational algebra is also
known by its limitation to express some simple and useful queries, which are easily expressed in
the language SQL: for example, the queries like those asking for the calculation of annual salary
from the monthly salary of employees. Indeed, it is admitted [15,16] that any query requiring an
arithmetical calculation or functions of SQL aggregates is not possible with the relational algebra.
Motivated by the need of a large coverage, researches have been undertaken in order either to
increase existing algebras or to define other families of algebras such as the algebras for nested
relation models [17,18,19,20,21,22,23], the algebras for structured value models [24,25,26,27]
and the algebras for object models [12,28,29]. One the interests of these researches is the
formalization of the object/relational model and the proposition of a object/relational algebra [1,
2] called A . for the formal object/relational model the A-algebra has allowed the identification of
adequate operation types . However, the query language design related to these data models
consists of defining algebraic operators. These operators are based on the A-algebra to which the
extension operators must be integrated. They facilitate both the description and interrogation of
complex data rich in symbolic representation, but requiring a prohibitive combinatorial
calculation during their manipulations. The constructors, used in query languages based on the A-
algebra, such as D language [1], adopt the set theory for the data specification and the first order
logic calculation to manipulate such data.

In this paper, we propose to enhance object/relational model through the notion of domain
generated by function or operator and to develop an algebra noted A* as an extension of A-
algebra. The query language based on A* should be still considered with regard to the power of
expression and calculation which is offered by a standard query language like SQL3. A*-algebra ,
is composed of logical operators (i.e. not *, or*, and *, compose *) and extension algebraic
operators (i.e. : ext.. add ..by). Both are specific to the requirements of the new object/relational
model. The main idea in this paper consists of integrating within a object/relational scheme, types
defined by operators. These types built likewise, are not generated by constructors but defined by
operator Op as being couples <Op, TOp> and where TOp is the type returned by the function or
constructed by the operator Op. Then A* allows the manipulation of complex entities requiring
symbolic representations in their definitions such as in the geometrical and spatial databases.
These latter, processing the shape and position of objects in space and time constitute an
application domain, which evokes new query classes as, topological queries and geographical
queries, aggregate queries where a value is associated to a point set. The treatment of such query
classes leads to different problems, such as the choice of data representation model, the data
interrogation and transformation language as well as algorithm complexity of such
transformations. In [7], extension operators have been developed to take into account
sophisticated queries which deal with geometrical figures in re lational or ext ended relational
context. In [30], geometrical queries are resolved in polynomial time in a constraint database
context. In A*, geometrical queries are tackled in an extended object/relational database context
to the concept of domain generated by operator or function. Thus, A* containing extension
operators is carried out by the query language ERA* for the querying of object / relational
databases.

This paper is oraganized as follows. In section 2, a typical example on a road network
connecting geographic zones of polyedrical form is presented. This example will il lustrate our
concepts. Section 3, concerns Date and Darwen’s approach related to the formalization of the
object/relational model as well as A-algebra for the manipulation of data in such models. In
sections 4 and 5 which are the core of the paper, we detail the extension of the object/relational
model and the specification of A*. In addition elements about ERA* (Extended Relational A*
language) are given. Section 6 is a discussion which compares A* with the relational algebra on
the one hand and with specification and querying languages of object database schemas (i.e.,
ODL, OQL) on the other hand. This paper ends with section 7, which concludes our work.

S. Nait Bahloul, Y. Amghar, & M. Sayah 78

2. Illustrative example

Let us consider a network of roads in a geographical space and let us interest to topological
queries. The matter is to treat the nature of the road network in the neighbourhood of one or
several cities. We evaluate, through the metrical query, the characteris tics of road or geographical
networks such as the different road accesses of a given city. Such query classes comprise
particular constraints like the intersection point of different road segments, evolutions of the road
network in a region or a given zone, the management and transformation of a such road network
and the exploitation of new geographical zones expressed under the form of geometrical figures
(Figure 1). However, major difficulty for the resolution and management of such queries implies
the necessity to have a database language rich in data modelling and querying. Also, this language
has to be effective in the query resolution regarding to both the quantity of available numerical
data and the nature of the calculation carried out. We consider, in the rest of this paper, a case of
road network where the convex regions A, B, C are simple geometrical figures such as rectangles,
square, triangles and polygons (Figure 1). So the road network is represented and carried out, in
language D of Date and Darwen [1, 2], through the object/relational database named
ROAD_BASE:

ROAD_BASE

Points = RELATION{Id_Point char(10),Abscissa real,Ordinate real } KEY { Id_Point } ;
Road_ Segments= RELATION{ Id_seg int, first_seg char(10), last_seg char(10)} KEY { Id_seg };
Roads = RELATION{ Id_path int, Road SET(int) } KEY { Id_path};
Polygons =RELATION{ Id_poly int, Polygon SET(int)} KEY { Id_poly } ; where SET is a predefined type within the
DBMS

Finished roads

Roads under
construction

 Figure 1: Road network

Notes:
§ The road network is defined partially, but sufficiently regarding to our proposition.
§ Relations are expressed according to the Date and Darwen’s formalism [1, 2].
§ The position of a city in the road network is represented with a point belonging to the relation

Points.
§ Id_path identifies the road, the set {Id1, Id2, Idn} defines the respective identifiers of

segments of this road.
§ Id_poly identifies the polygon, the set {Id1,Id2,…,Idm} defines the respective identifiers of

segments constituting a given polygon.
§ Relation Road_ Segments represents the segments that board the cities defined in the relation

Points. Attributes first_seg and last_seg are the respective identifiers of departure and arrival
points in a segment identified by id_seg.

§ The relation Roads specifies all the possible roads between the different cities in the relation
Points; the road being a set of road segments.

§ The relation Polygons defines the set of the convex figures in the road network.

Let us consider now a given state of the database ROAD_BASE containing the five different

cities A, B, C, D, E in a space S (Figure 2). A relation r, in the Date and Darwen’s formalism is
defined by two sets representing respectively the heading and the body of r. The heading Hr

S. Nait Bahloul, Y. Amghar, & M. Sayah 79

specifies the scheme of the relation whereas the body Br contains the tuples corresponding to Hr.
So, the relations Points, Road_Segments, Roads and Polygons are defined as follows:

H_Points = {<Id_Point, char(10)>, <Abs, real>, <Ord, real>};
B_Points = {{<Id_Point, char(10), A>, <Abs, real, 6>, <Ord, real, 12>},

{<Id_Point,char(10),B>,<Abs, real,12>,<Ord, real,10>},
{<Id_Point, char(10), C>, <Abs, real, 3>, <Ord, real, 6>},
{<Id_Point,char(10),D>,<Abs, real,20>,<Ord, real,15>},
{<Id_Point, char(10), E>, <Abs, real, 18>, <Ord, real, 3>}};

H_ Road _Segments = {<Id_seg, int>, <first_seg, char(10)>, <last_seg, char(10)>};
B_ Road_Segments= {{<Id_seg, int, 1>, <first_seg, char(10), A>, <last_seg, char(10), B>},

{<Id_seg, int, 2>, <first_seg, char(10), A>,<last_seg, char(10), D>},
{<Id_seg, int,3>, <first_seg, char(10), E>,<last_seg, char(10), A>},
{<Id_seg, int, 4>,<first_seg, char(10), B>,<last_seg, char(10), D>},
{<Id_seg, int, 5>,<first_seg, char(10), C>,<last_seg,char(10), E>},
{<Id_seg, int, 6>,<first_seg, char(10), E>,<last_seg, char(10), D>},
{<Id_seg, int, 7>,<first_seg, char(10), D>,<last_seg, char(10), A>},…}; /* The segment
AD is different from the segment DA Because the departure and arrival segments are
different */

H_Roads= {<Id_path,int>,<Road,SET(int)>} ;
B_Roads= {{<Id_path,int ,10>,<Road,SET(int),{1,4}>}, /* Road {A,B,D} */

{<Id_path,int,20>,<Road,SET(int),{3,2}>}, /* Road {E,A,D} */
{<Id_path,int,30>,<Road,SET(int),{5,3}>}, /* Road {C,E,A} */
{<Id_path,int,40>,<Road,SET(int),{5,3,1,4}>}, /*Road {C,E,A,B,D} */ …}

H_Polygons= {<Id_poly ,int>,<Polygon,SET(int)>} ;
B_Polygons={{<Id_poly,int ,100>,<Polygon,SET(int),{1,4}>} , /* Triangle ABD */

{<Id_poly ,int,200>,<Polygon,SET(int),{5,6,7}>}} /*Polygon CEDA*/ }

Zone Z1 Z2

P1

P2

Sp
ac

Y

A

C

B

E

D

3

12

Road

Zone

Zone Z

X 3 18 6

Figure 2 Road network

Let us note in this example (Figure 2) that we have considered data types related to the
management and processing of geometrical data in a network of roads. Indeed, and in order to
take completely into account the quantity of available data in the database ROAD_BASE; it is
necessary to express relative queries to many situations in the road network such as:

(1) What are the respective coordinates of the cities A and C?
(2) What is the distance between the cities A and E?
(3) What are the cities belonging to zone z?
(4) What are the cities not belonging to zone z?
(5) What is the transitive closure of the road set in zone z do not cross points of the line

Y=3? Deduce the nature of the possible polygons?
(6) What are the separate roads connecting the cities A and B?
(7) What are all the roads that cross the cities A, B and C?
(8) What is the shortest road connecting zones z and z1?
(9) What are all the roads connecting zone z and z1 and not passing via zone z2?

(10) What is the shortest circuit accross all the cities? Etc…

S. Nait Bahloul, Y. Amghar, & M. Sayah 80

The resolution of such queries requires:
§ on the one hand the choice of a data model capable to represent complex data types (e.g.:

roads, convex regions, circuits) and several situations in a road network (e.g.: separate roads,
the shortest road, roads in a region, intersection of regions, the circuit accross all the cities, the
cities not belonging to a road etc.) and

§ on the other hand the definition of a query database language which can deal with the quantity
of available numerical data in such applications.

3. Date and Darwen’s Approach

Before starting the resolution with A*, we present in this section Date and Darwen’s formalism as
well as A-algebra proposed in [1, 2]. Date and Darwen consider that SQL3 does not correspond to
an object/relational language in terms where the notions of objects and nested tables consist of a
logical confusion between the class type, defined in Object Oriented languages, and the relation
concept in relational databases (i.e. relation = class, the equation is confused). Indeed, Date and
Darwen note that the class is semantically equivalent to the domain or type and criticize research
studies on the evolution of the Codd's relational model approaching a relation to a class. So,
unlike the data model developed by the group ODMG in [6] and where the class concept is
inherited from object-oriented languages, Date and Darwen propose a convivial object/relational
extension of the Codd's relational model via domain or type generators (i.e. extensions to object
characteristics are realized on the basis of the type theory and where equation Class =Domain is
adopted).

Date and Darwen propose a relational algebra named, A, slightly different from Codd's studies
[5] in terms where it is based on the first order logic calculation. Some operations of the Codd's
relational algebra have been revisited for the coverage of the new orientation of A-algebra.
Indeed, a relation r is defined with its heading Hr and body Br. The heading represents the
schema of the relation r and is defined as a set of couples <a,T> (with a an attribute and T the
attribute type), while the body Br is the set of tuples. A tuple t being defined as a set of triplets
<a,Ti,v> with <a,Ti> is the Hr element and v the value of the attribute a.

3.1. Formal definitions

Let be a relation r, an attribute a, a type T of the attribute a and v a value of the type T;

(a) Heading: A heading Hr is a set of ordered pairs <a, T> for each attribute a of r. So, two pairs
<a1,T1> and <a2,T2> of r are such as a1? a2 (i.e.: the names of attributes are different).

Example: The heading of the relation Points quoted above is:
H_Points = {<Id_Point, char(10)>, <Abscissa, real>, <Ordinate, real>};

(b) Tuple : Let tr be a tuple and Hr a heading; The tuple tr is a set of ordered triplets <a,T,v>
where each attribute ai of Hr is associated with a triplet <ai,Ti,v> .

Example: t1={<Id_Point,char(10),C>,<Abscissa, real,3>,<Ordinate, real,17>} ;
t1 is a tuple of the relation Points realizing the city C which is located at coordinates (x=3,y=17).

(c) Body: A body Br of a relation r is a set of tuples t. However, there may be tuples tj
corresponding to the heading Hr without tj∈Br.

Example: Let tj= {<Id_Point, char (10), X>, <Abscissa, real, 40>, <Ordinate, real, 28>},

We notice that the tuple tj corresponds to the heading H_Points in the relation Points defined

in the example ROAD_BASE above; but tj does not belong to the body B_Points of the relation.

Remarks:
(1) Each heading Hr and body Br is viewed as a set.
(2) A subset of heading Hr (respectively of body Br) is heading Hr’ (respectively of body Br’).

S. Nait Bahloul, Y. Amghar, & M. Sayah 81

The object/relational A-algebra , defined in [1,2], allows a logic calculation of first order on the
heading Hr independently from the one carried out on the body Br. Indeed, each algebraic
operator in A, applied to a relation r, considers semantic actions on Hr different from those
applied to Br.

3.2. Operators of the A-algebra

A-Algebra is essentially based on the set theory and consists of five basic operators AND, OR,
NOT, RENAME, REMOVE and of two derived operators COMPOSE and TCLOSE . The macro
operator COMPOSE considers the composition of relations as a generalization of the composition
of functions. The operator TCLOSE, based on the Codd’s algebra defines explicitly the operator
of transitive closure. Let us consider two relations r and s such as),(),(BsHssandBrHrr ≡≡ with
Hr, Hs and, Br, Bs respectively headings and bodies of relation’s r and s.

AND Operator . The AND operator, is a conjunction of two relations r1 and r2. The heading Hs
of the resulting relation s is the union of the respective headings Hr1 and Hr2 of the relations r1
and r2 while the body Bs of s is a set built by conjunction of some tuples in the respective bodies
Br1 and Br2 of the relations r1 and r2. We note that this operator corresponds, in Codd's algebra,
to a natural join of the relations’ r1 and r2.

2r AND 1rs ← ; 2Hr1HrHs ∪= ;))}2tr1trts()2Br2tr()1Br1tr((2tr,1tr/ts{Bs ∪=∧∈∧∈∃∃=

OR Operator. The OR operator, is a relational disjunction, generalization of the operation Union
in the Codd's relational algebra. So, Hs, the heading of the relation result s, is the union of the
headings Hr1 and Hr2 of the input relations r1 and r2. The body Bs of s is a set corresponding to
the disjunction of tuples in the respective bodies Br1 and Br2 of the relation’s r1 and r2.

2r OR 1rs ← ; 2Hr1HrHs ∪= ;))}2tr1trts())2Br2tr()1Br1tr(((2tr,1tr/ts{Bs ∪=∧∈∨∈∃∃= .
The operator OR, in Date and Darwen’s A-algebra, allows to treat the headings and bodies

separately and has not an equivalent operator in the Codd's relational algebra.

NOT Operator. The operator NOT, expresses the complement of a relation r noted (Hr, Br). The
heading Hs of s is equal to the heading Hr of r; while the body Bs of s, contains all the tuples ts,
which do not belong to Br, body of r.

)r(NOTs ← ; HrHs= ;))}trts()Brtr((tr/ts{Bs =∧∉∀= tr being a tuple belonging to Br.

Operator RENAME. The operator RENAME allows the renaming of attribute named a in r by
another attribute called b in the resulting relation s without changing its type T. So, the heading
Hs of s is identical to the heading Hr of r except the pair <a,T> that is replaced by <b,T>. The
body Bs is formed by the set of tuples tr in Br where <b,T,v> replace all the triplets <a,T,v>.

)b,a(RENAME rs ← ; },{}},{{ ><∪><−= TbTaHrHs ;
}))},,{}},,{{(),,()()((,/{ ><∪><−=∧>∈<∧∈∧∈∃∃= vTbvTatrtstrvTaTvBrtrvtrtsBs ;

We notice that the operator RENAME is not necessary in Codd's algebra because it does not
act on the semantics of the concrete database.

REMOVE Operator. The operator REMOVE generates a relation by eliminating a given
attribute a, of a relation r. This operation is equivalent, in Codd’s algebra, to the projection of r on
all the attributes of r except for a given attribute a. So, the heading Hs is equal to Hr, the heading
of r, minus the pair < a, T >. In this case, the body Bs of s, is a subset of tuples tr of r
corresponding to the heading Hs. The first order logical calculation, well adapted to A-algebra, the
operator REMOVE acts separately on heading Hr and the body Br of the relation r. This
possibility of calculation allows enhancement of the possibilities of transformation of database
scheme and supplies a better exploitation of concrete relations out of the headings, which they
support.

a REMOVE rs ← ; where <a,T> ∈ Hr, },{ ><−= TaHrHs ;

}))},,{(),,()()((,/{ ><−=∧>∈<∧∈∧∈∃∃= vTatrtstrvTaTvBrtrvtrtsBs ;

S. Nait Bahloul, Y. Amghar, & M. Sayah 82

COMPOSE Operator. The COMPOSE operator, is defined by the combination of the operators
AND and REMOVE such as:

2r COMPOSE 1rs ← ; 1a REMOVE 2a REMOVE...an REMOVE)2r AND 1r(s ≡ ;

}},,...,2,2,1,1{)21{(><><><−∪= tnantataHrHrHs ;

}}))},...,1{/,,{)21(())22()11(((,2,1/{ anaaivtiaitrtrtsBrtrBrtrtivtrtrtsBs ∈><−∪=∧∈∨∈∈∀∃∃= .

Notes:
§ a1, a2, … an are the common attributes to the relations r1 and r2 (n > =0).
§ The COMPOSE operator does not exist in Codd's algebra.
§ The order of the Remove in the definition of COMPOSE operator is not important because it

is concerned with the same structure of the set type.
§ If n=0 then (r1 COMPOSE r2) ≡ (r1 AND r2) and the relation (r1Χr2) is included in the (r1

AND r2) body; where (r1Χ r2) is the cartesian product of r1 by r2 in the Codd's relational
algebra.

The body Bs of the result relation s in the case of the operators AND and OR cannot contain
tuples tr already existing in one of the operand relations r1 or r2. The heading Hr is defined by Hr
= Hr1∪ Hr2.

TCLOSE Operator . Compared to the Codd's relational algebra, A-algebra includes an explicit
operator for the transitive closure named TCLOSE. Indeed, given that a relation r containing two
attributes X and Y of type T, the transitive closure TCLOSE (r), following attributes X and Y, is a
relation r+ whose the heading Hr+ is the same of the heading Hr. On the other hand the body Br+
is such as :

rTCLOSEr ←+ ; HrHr =+ ;

,Ssequence/ttuple{BrBr ∀∪=+
BryTYznTXzTYzTXzTYxTXS ∈><><><><><><= }),,,,,{};.;2,,,1,,{};1,,,,,{(

}))(}),,,,,{((+∈∧><><=⇒ BrtyTYxTXt with three propositions (1), (2) and (3) as being equivalent.
(1) The tuples +>∈<>< BryTYxTX ,,,,,
(2) There is a sequence of values z1,z2,…,zn having the same type T such as :

BryTYznTXzTYzTXzTYxTX ∈><><><><><>< },,,,,{};.;2,,,1,,{};1,,,,,{
(3) There is a way between tuples <X,T,x> and <Y,T,y> in the body Br .

Notes:
§ for the operations (r1 OR r2) and (r1 AND r2),)21())22,()11,((TTHrTaHrTa =⇒>∈<∧>∈< ;
§ the operation (r RENAME(A,B)),)),(()),(),((baRENAMErrHrTbHrTa =⇒>∈<∨>∉< .
§ in the case of TCLOSE ,)()(+⊂⇒∪=+ BrBrEBrBr with E: set of the added tuples.

4. A*: New algebra for Object/Relational Model

In this paper, we consider that a domain or type is specified by an operator Op which would be
equivalent, in our case, to a function that returns a value belonging to a domain or type. In the set
of the triplets })tn:pn,...,2t:2p,1t:1p(Op,TOp,Op{ >< Op represents a function, TOp the type returned
by Op and Op(p1,…) the function signature. More generally, Hr={<a1,t1>,<a2,t2>, …, <an,tn>,
<Op1,Top1>, …,<Opn,TOpn>} is a header where an,...,2a,1a are attributes associated with the
relation r; t1, t2, …, tn types assigned respectively to attributes ai; Op1,Op2,…,Opm are the
operators domains definitions. TOp1, TOp2,…, TOpm are the respective types returned by the
operators Opi, i = 1, …m.

4.1. Definitions

S. Nait Bahloul, Y. Amghar, & M. Sayah 83

Comparing with notions presented in Section 3, the concepts of heading, of tuple and of body are
redefined according to our approach.

Definition 1. A heading Hr is a set of ordered pairs <X,Tx> where X is an attribute a or an
operator Op. The type Tx is either a predefined type or a type of operator result.

Definition 2. Let Hr be a heading and t a tuple; The tuple t is a set of ordered triplets <X, Tx,
v> corresponds to each attribute or operator X in Hr. In this case where X is an operator Op, the
value v is defined by])pn[],...,1p([Opv = .

Definition 3. A body Br of a relation r is a set of tuples t containing tuples tj such as

>=<)pn,...,1p(Op,TOp,Optj where p1,…pn are parameters assigned by value or by variable .

Example of some types:
a. < /*operator Op:*/ Define_Road, /* type TOp :*/Set (int), /* Signature of Op:*/

 Define_Road (Id-departure: char (10), Id-arrival: char (10)) >
b. < Define_Road, set (int), Define_Road(A,C)> /* A, C are cities, see Figure 2. */
c. <inverse,real,inverse(x:real)> ≡ <inverse,real,(1/x)> /* Parameters by variable */
d. <inverse,real,inverse(4)> ≡<inverse,real,0.25> /* Parameters by value */

We note that the operator Op can return an abstract data type (a), an instance of type (b), a
function (c) or a value (d) according to the input parameters.

Definition 4. An operator)t:p,...,t:p(Op nn11 is a scalar function or domain constructor.

Definition 5. An abstract data type, ADT, is a heading of a relation r named Hr, which contains at
least a couple <Op, TOp> and where the operator Op is a generator of the domain TOp. The
tuples tr corresponding to heading Hr are called instances.

4.2 Corollaries

Following the definitions defined above we deduce the notions of instances for an abstract data
type and equivalence between two tuples T1 and T2.

Corollary 1. an instance of an abstract data type defined by the heading

},,...,,,,{ 11 ><><><= nnadt TaTOpOpTaH is a tuple t defined by:

},,,...,:):,...2:2,1:1(,,,1,1,1{ 1 ><><><= + vnTnanttptptpOpTOpOpvTat n .

Example :T ={<id_ch,int,10>,< Define_Road, set(int), Define_Road(A,D)>}. The road identified
by id_path=#10 between the city A and the city D is {A,B,D} ; /* See Figure 2. */

Corollary 2. Let H be a heading defined by },{ ><= TiXiH where },{ OpAttributeXi∈ . Two tuples
T1et T2 corresponding to the heading H are equivalent if and only if:

))()((,,,,, 21 uvbaTutbTvta =∧=>∈<∃>∈<∀ where ,T)t:p,...,2t:2p,1t:1p(1Op,1TOp,1Op 1>∈<∀
,2T)tm:qm,..,2t:2q,1t:1q(2Op,2TOp,2Op >∈<∃

)))tm:qm,..,2t:2q,1t:1q(2Op)t:p,...,2t:2p,1t:1p(1Op()2TOp1TOp()2Op1Op((≡∧=∧=⇒

4.3 Example of an extended data model

Let us consider the illustrative example of the section 2, the database ROAD_BASE* in the new
object/relational model is as follows:

S. Nait Bahloul, Y. Amghar, & M. Sayah 84

ROAD_BASE *
Points = RELATION{ Id_Point char(10), Abscissa real, Ordinate real } KEY{ Id_Point } ;
Road_Segments = RELATION{Id_seg int, first_seg char(10), last_seg char(10)}

KEY{ Id_seg };
Roads = RELATION{Id_path int, OP1 Road(Id-departure char(10),Id-arrival char(10)):

SET(int) KEY { Id_path};
Polygons = RELATION{ Id_poly int, OP Polygon(Id_seg-departure int,Id_seg-arrival int):

SET(int) KEY { Id_poly } ;

Notes:
§ The operator Road allows finding all the possible roads between the cities identified

respectively by Id_departure and id_arrival. This operator generates the set of segments,
which form the parts of the road in question: SET (int)ß Road (Id_departure: char (10),
Id_arrival: char (10)).

§ The operator Polygon allows building the domain of all the possible convex figures between
segments, identified respectively by Id_seg-departure and id_seg-arrival. This operator
returns a set of segments that form the convex space or the polygon in question: SET (int)ß
Polygons (Id_seg-departure: int, Id_seg-arrival: int).

§ The name of the operator Op represents the domain and TOp is the representation of the
domain in the object/relational database. Indeed, in the case of the domain Polygons defined
by the operator Polygon, Type TOp is equivalent to the type SET (int) and the values v are
such as v = Polygon (Id_seg-departure: int, Id_seg-arrival: int). For example, the polygon
CEDA in the figure 2 is defined by the tuple t as follows: t={<Id_poly, int, 200>, <Polygon,
SET(int), {5,6,7}>} /* see Figure 2. */

4.4. Basic operators of extended model

The extended object/relational model requires new algebra for the support of the domains
generated by operator Op. Indeed, in our approach, we have exploited the Date and Darwen’s
studies on the A-algebra and previous work [7] on the operator bound by the procedures "EXT” to
specify and define A*. This latter is based on same operators as A-algebra.

Operator NOT*. The operator NOT* allows the elaboration of complement to the relation s
relatively to another relation r.

r*NOT s ; HrHs= ;))}trts()Brtr((tr/ts{Bs ≠∧∈∃=

Operator REMOVE* . The operator REMOVE* allows to remove, from the body Br, all the
semantic entities derived from an operator Op. In case where the element to be removed is an
attribute, REMOVE* is equivalent to the operator REMOVE in A-algebra.

XREMOVErs *← ; where }))Op,A{X()HrT,X(=∧>∈<

},{ ><−= TaHrHs ;
If X=a then begin

},{ ><−= TXHrHs ;

}))},,{(),,()()((,/{ ><−=∧>∈<∧∈∧∈∃∃= vTXtrtstrvTXTvBrtrvtrtsBs ;
Endif Else(X=Op) begin

HrHs= ;)trt:)t:p,..,2t:2p,1t:1p(X,T,X()Brtr((tr/ts{Bs 1n >∈<∧∈∃= +

}))})t:)t:p,..,2t:2p,1t:1p(X,T,X{trts(1n ><−=∧ +
endelse

Operator TCLOSE. This operator allows the semantic imp rovement existing in the
object/relational database. Indeed, the body Br of a relation r is increased by new tuples
expressing all information deduced by transitive closure.

rTCLOSEr *←+ ; HrHr =+ ;

))}(}),,,,,{()((,/{ BrtyTYxTXtBrSSséquencettupleBrBr ∈∧><><=⇒∈∀∪=+ With

S. Nait Bahloul, Y. Amghar, & M. Sayah 85

}y,T,Y,zn,T,X{};.;2z,T,Y,1z,T,X{};1z,T,Y,x,T,X{S ><><><><><><=
Or }y,T,Y,zn,T,X{};.;2z,T,Y,1v,T,2Op{};1v,T,Y,v,T,1Op{S ><><><><><><=
In this case the heading Hr of r contains the operators Ops, TCLOSE* expresses a transitive

closure between the operators or functions.

Operator RENAME* . In addition to renaming an atomic attribute this operator is used to
change of the name of an operator Op. The heading Hs of s is identical to the heading Hr of r
except the pair <O1p,TO1p> that is replaced by <O2p,TO2p>. The body Bs is formed by the set
of tuples tr in Br where <O2p,TO2p,v2> replace all the triplets <O1p,TO1p,v1>. This operator
can be written:

)2Op,1Op(RENAME rs ← ; }2T,2Op{}}1T,1Op{Hr{Hs ><∪><−= .

Notes:
§)COMPOSE*COMPOSE(and)OR*OR(),AND*AND(≡≡≡ .
§ Each operator of A* is followed by the character star (*) to mean that the operator belongs to

the extended algebra.

4.5 Extension operators

The definition of an object/relational database contains relations having headings of
type }TOp,Op,..,TOp,Opt,a,..,t,a,t,a{H mm11nn2211 ><>><<><><= . So, the interrogation
and exploitation of such database require appropriate algebraic operators besides those used for an
object/relational model. Several variants of the extension operator that we have proposed in [7]
have been adapted and integrated into the specifications of A*-algebra .

4.5.1. New type extension

The operator of new type extension allows the modification of the heading of the relation r by
inserting a new attribute an+1 and its type tn+1 in the heading Hr of r. The body Bs of s is such
that Bs contains for each tuple tr of r, the triplet < an+1 , tn+1, null > where the constant ' null '
belongs to any system or user type. The operator in this case is equivalent to the operator ALTER
in SQL3.

)t:a(ADD r EXTs 1n1n ++← ; }t:a{HrHs 1n1n ><∪= ++ ;

)}null,t,atrts(Brtr/ts{Bs 1n1n ><∪=∈∀= ++

}t,a,...,t,a,t,a{HrbeingHr nn2211 ><><><= ∀ i ∈ {1,…,cardinality(r) },

∀ (tr ∈ Br) (tr ß tr ∪ <an+1,tn+1,null>) .

Example of new type extension
Points ß EXT Points ADD Color :int ; Relation Points becomes:
Points = RELATION Id_Point char(10), Abscissa real, Ordinate real, Redius real,Color int} KEY

{ Id_Point } ; with init(Points) is defined by : init(Points) {for i=1 to card (Points) do
Points.Color=null;}

4.5.2. Extension of computed type

The extension of computed type operator allows on the one hand to modify the heading of the
relation Hr by inserting the new attribute an+1 to Hr, and on the other hand to define the tuples
results of Op application in r; the type of the attribute an+1 being defined by the type of

)tn:pn,...,t:p,t:p(Op 2211 . The value v in the triplet >< + v,TOpa ,1n is expressed by

])p[],...,p([Opv n1= where [pi]: is the value of pi. The expression of type extension is as
follows:

)tn:pn,...,2t:2p,1t:1p(OpBY1naADDrEXTs +← where :

S. Nait Bahloul, Y. Amghar, & M. Sayah 86

HrTOp,1anand}tn,an,...,2t,2a,1t,1a{Hr >∉+<><><><=

}1tn,1an{HrHs >++<∪=

}[pn])[p2],...,([p1],Opv(})v,1tn,1an{trts()Brtr((v,tr/ts{Bs =∧>++<∪=∧∈∃∀= .

Example of extension of computed type
Points ß EXT Points ADD Redius BY calcul_redius(Abscissa:real, Ordinate:real): real;
Relation Points becomes
Points = RELATION{Id_Point char(10), Abscissa real, Ordinate real,Redius real, KEY {
Id_Point } ; with the operator calcul_redius defined by: calcul_redius(Abscissa:real,
Ordinate:real): real
begin

Redius=sqrt (Sqr(Abscissa)+Sqr(Ordinate));
Return (Redius) ;

end

4.5.3. Global operator extension
A global operator extension acts on the heading Hr or the body Br of the relation r and allows
defining new domains, new constraints of integrity defined by the operator Op or reorganizations
of the relation r and generates as a result, a relation defined by

}TOpL,OpL,...,1TOp,1Op,tn,an,..,2t,2a,1t,1a{Hs ><><><><><= . The operator ExtG can be
i) internal if Op is specified when it is called; ii) external if Op is DBMS predefined operator.

1tn:)tn:pn,....,2t:2p,1t:1p(OpBYrEXTs G +←

[begin /* Body of Op which can be written in a high-level language or in SQL */ end.]
Hs={<b1,t1>,<b2,t2>…,,<bm,tm>} with bi ∈ {ai,Op},

})}b,...,b,b{X},t,...,t,t{T/ts{Bs m21n21 ∈∃∈∃=
)))}t:p,..,t:p(Opv(})v,T,X{ts()HsT,X((11=∧><=∧>∈<

Case (a): for this type of extension, the operator Op allows to define a domain by the operator Op
which is integrated into the scheme of a given relation (i.e.: },{ ><∪= TOpOpHrHr , TOp is the Op
result type). Besides, the application of several operators to a scheme of a relation r allows to
consider various complex types from r without changing its dimension.

Example of domain of points in Square C
Points1 ß EXT Points BY InSquare(Id_Point :int,C :Polygon) :Boolean ;
Relation Points is:
Points = RELATION{Id_Point char(10), Abscissa real, Ordinate real, Redius real, Color int, OP

InSquare(Id_Point :int,C :Polygon) :Boolean} KEY { Id_Point } ;
with InSquare (Id_Point,C) defined by :
InSquare(Id_Point :int,C :Polygon)
begin if id_Point ∈ (square C) then return 1 else return 0 ; end

Case (b): this type of extension uses aggregation, which allows restructuring the relation r. Let us;
consider the case of a grouping of attributes a1, a2. an in a new attribute b. Indeed, in the example
below, the domain «AngleTeta» replaces the attributes «Abscissa» and «Ordinate» in the Relation
Points. The dimension of the result relation s is inferior to the rank of the operand relation r:

},,..,,,,{ 2211 ><><><= nn tatataHr ;

},,,,...,,,{ 2211 ><><>><<= TOpOptbtbtbHs mm ; with m<n, bj=a1…ap and j=m , and p=n bj
being an aggregation of several attributes ai

1 init (Points) is a procedure of initialization existing in the dbms

S. Nait Bahloul, Y. Amghar, & M. Sayah 87

Example of restructuration of the relation Points
Points ß EXTG Points BY AngleTeta(X:real,Y:real):real ;
Points = RELATION{Id_Point char(10), Redius real, Color int, OP

AngleTeta(Abscissa:real,Ordinate:real): real} KEY { Id_Point } ;
AngleTeta(Abscissa:real, Ordinate:real)
Begin for i=1 to card(operande relation) do {

compute the angle Teta from Abscissa and Ordinate,
remove the coordinates Abscissa and Ordinate ,
insert tuple of the operand relation into Points; }

end

Case (c): m>n and ai∈{b1…bm}; that case uses a redefinition of a user data type in its basic types
[21,23].

Example: Redefinition of a domain D
§ Let the relation Points defined by: Points(Id_Point char(10), Redius real,Color int, OP

AngleTeta(Abscissa:real, Ordinate:real)); we have: TYPE Segment {begin: char(10) , end:
char(10) }

§ Points ß EXTG Points BY S :Segment; Relation Points becomes: Points =
RELATION{Redius real,Color int, Id_Point char(10), S :Segment, OP
AngleTeta(Abscissa:real, Ordinate:real)} KEY { Id_Point } ;

§ Points ß EXTG Points BY Display(s:Segment); Relation Points becomes : Points =
RELATION{ Id_Point char(10), Redius real,Color int, S-Begin :char(10), S-End : char(10),
OP AngleTeta(Abscissa:real, Ordinate:real), OP Display(s:Segment)} KEY { Id_Point }.

4.5.4. Local operator extension

Unlike the global operator extension, this type of extension acts exclusively on the body Br of a
relation r and allows consequently expressing queries on tuples t or entities e having the
characteristics Ci defined by an operator Op.

s ← EXTL ALL r BY Op(p1:t1,p2:t2,…,pn:tn):tn+1
[begin /* Body of Op which can be written in a high-level language or in SQL */ end]

}TOp,Op{HrHs ><∪= ; { }><∪=∈∀=)Op(Exp,TOp,Op{trts Brtr/tsBs ; where Exp (Op):
the value, which defines the operator Op for a given query. TOp: specified by the expression Exp
(Op). Figure 3 depicts extension operators.

Example of local extension operator
Neighbourhoods ß EXTL ALL Points BY Near_of(P :char(10), d :real) :Set (int) ;

Let us consider the relation Points of the data base ROAD_BASE*:

Points = RELATION{ Id_Point char(10), Abscissa real, Ordinate real} KEY { Id_Point } ;

So, neighbourhoods = RELATION{Id_Point char(10), Abscissa real, Ordinate real, OP

Near_of(P: char(10), d : real) : Set (int) } KEY{ Id_Point }
are declared by:
VAR pp tuple(Id_Point char(10), Abscissa real, Ordinate real)

/* Definition of the point A(6,12) */ pp.Id_Point =’A’; pp. Abscissa=6; pp. Ordinate=12 ;
Neighbourhoods ß EXTL ALL Points BY Near_of(‘A’, 2)
/* Points in a circle of centre A(6,12) and of Radius 2; see Figure 2. */
/* Exp(Op) is defined in that case by Exp(Op) ={(x,y)/ (x-6)2+(y-12)2 =4} */
with Near_of(P :char(10), d:real) defined by:
Near_of(P :char(10), d :real) /* d: distance */
Begin
Var E :set(int) ; Eß F ;
for i=1 to count(Points) do Begin

S. Nait Bahloul, Y. Amghar, & M. Sayah 88

read tuple(i) ;
if (P-tuple(i).id_point)<= d then tß tuple(i).Id_Point ;Eß E ∪ {t};
insert tuple(i) of the relation Neighbourhoods ; endif

endfor
return (E) ;
end

a1:t1 a2:t2 …. ai : ti an :tn

 Hr

b1:t1 b2 :t2 bm :tm a2:t2 ai : ti Opi :Topi an :tn

 Hr

Global extension operator (case c)

a1:t1 a2:t2 Opi :Topi an :tn an+1:tn+1

 Hr1

Extension Operator to the new type or calculated type

a1:t1 a2:t2 Opi :Topi an :tn

 Hr1

p1:t1 p2:t2 pi : ti p: t

 HOpi

Global extension operator (case a) ;

a2:t2 a4:t4 …. Opi :Topi an :tn

 Hr1

a1:t1 a3:t3 pm:tm p: t

 HOp

Global extension operator (case b)

Figure 3. Various types of extension to the operators Op .

4.6. Advanced operators

4.6.1 The operator of relation extraction

The operator of relation extraction builds a relation from one or several operand relation r1, rp.
Indeed, the operator Op applied to headings Hr(i) allows to define the result heading:
Hs={<a1,t1>, <a2,t2>, …,<an,tn>, <Op1,Top1>, <OpL,TopL>};the operators Op1, …, OpL, in the
relation result s, provide the possibility of the expression of new situations in the database.
Moreover, the operator EXTRACT allows also the extraction of tuples tr by the operator Op
(p1,p2...p) according to functional dependences linking the operand relations r1,..., rp: s ←
EXTRACT r FROM r1,r2,…, rp BY Op(p1:t1, p2:t2, …,p : t) :tn+1;

}TOp,Op,HrT,a,T,X{Hs iii ><∃>∈<∃><∀= with <Xi,Ti>=<a,T> ∨ <Xi,Ti>=<Op,Top>.

})Hs with compliant ts()trts((Hrtr/ts{Bs
n

1i

i ∧⊂∈∃=
=
U with Hr (i), the heading of the

relation r(i) and (i=1..n). The operator Op allows to extract entities of type tn+1, according to the
heading Hr of the operand relation r, from the relations r(1), r(2),…, r(n). The attributes <Xi, Ti>
of the result relation s are either attributes already existing in the values relations’ r(i) or attributes
<Op,TOp> generated by the operator Op.

Extraction of a relation by operator OP
Let us consider Points and Neighbourhoods two relations (4.5.3 (a)) and (4.5.4):

S. Nait Bahloul, Y. Amghar, & M. Sayah 89

Points = RELATION{Id_Point char(10), Abscissa real, Ordinate real, Redius real, Color int, OP
InSquare(Id_Point :int,C :Polygon) :Boolean } KEY { Id_Point } ;

Neighbourhoods = RELATION{Id_Point char(10), Abscissa real, Ordinate real, OP Near_of(P:
char(10), d :real) :Set (int) } KEY { Id_Point } ;

Now, let the following query: EXTRACT s FROM Points, Neighbourhoods By P_and_N(void)
with: P_and_N(void) Begin Points AND Neighbourhoods End
S = RELATION{Id_Point char(10), Abscissa real, Ordinate real, Redius real,Color int,

OP InSquare(Id_Point :int,C :Polygon) :Boolean OP Near_of(P :char(10), v :real) :Set (int)}
KEY { Id_Point } ; which are points in the square C defined by the inequalities
Cs{0<x<a,0<y<a}

EXTRACT Q FROM S BY Squaree(Cs) :Set (int) ; with Square (Cs) defined by:
Square(Cs :set(int))

for i=1 to card(relation Points) do begin
Read tuple(i) ; Tß tuple(i).Id_Point ; If (InSquare(T,Cs) then Bs ß tuple(i); end

4.6.2. Abstract data type generation

In an object/relational model the definition of the relation notion as a heading Hr and a body Br in
the Date and Darwen’s formalism [1, 2] has allowed to approach the relation notion like the
domain set Hr={<a1, T1>, <a2, T2>, <an, Tn>} where the management of the body Br of the
relation does not influence the heading calculation. The integration of Operators Op in the
definition of an extended object/relational model expresses each heading Hr of a relation r with
an abstract data type Hadt={<A1, T1>, <Om, TOm>, <An, Tn>} . The generation operator of
types SHOW (a) expresses all the abstract data types in the heading Hr = {< a1, T1 >, < Op, TOp
>, < Om, Tom >, < an, Tn >} following the nature of operator Op and its input parameters. Once
the abstract data type or ADT has been generated, it is possible to extract SHOW (b), all the
instances respecting the signature of such type or domain.

(a):): s ← SHOW[ALL] ADT [<ADT_name>] ON r WHERE <conditions> with <conditions>
an expression on the heading Hs and can be a definition by value or by variable parameters of the
operator Op (p1:t1, p: t)

))}TrueConditions()HsTOp,Op(()HrT,X(,HrTOp,Op/T,X{Hs iiii >≡<∧>∈<⇒>∈<>∈<∃><=

}))Hs with compliant ts()trts((Hrtr/ts{Bs ∧⊂∈∃=

(b): s ← SHOW[ALL] [<instance_name>] INSTANCE ON <ADT_name> WHERE <conditions>

}name_ADTHT,X/T,X{name_ADTHHs ><>∈<∃><>≡<=))}TOpT()OpX((=∧=

)}TrueConditions()Hswith compliantts/((ts{Bs >≡<∧= with <Conditions> an
expression on the body Bs.

Let be the relation Neighbourhoods in the section (4.4.4) :
Neighbourhoods = RELATION{ Id_Point char(10), Abscissa real, Ordinate real,

OP Near_of(P :char(10), v :real) :Set (int) } KEY { Id_Point } ;
SHOW ADT N_Proches ON Neighbourhoods /* Query SHOW without conditions. The following
query expresses all the abstract data types defining, possible Neighborhood. */

5. Extended relational algebra language (ERA*)

ERA* is an algebraic language based on the operators of A*-algebra. Indeed, realization of the
algebraic extension operators offers new functionalities in a database language. The definition of
relation r and data logical calculation proposed in the Dates and Darwen’s formalism on the
object/relational models [1,2] leads:

- to enrich the object/relational model seen by Melton on the one hand;

S. Nait Bahloul, Y. Amghar, & M. Sayah 90

- the reinforcement of data interrogation language by sophisticated operators for the resolution
of some query classes on the other hand.

Consequently, the integration of possibilities offered by the language ERA* in SQL3 should

improve this standard. To illustrate partially ERA*, let us consider the database ROAD_BASE*
defined in section 4.3 and the set of queries of the illustrative example of the section 2. Our
objective in the following is summarized in the presentation of the solutions of some types of
queries by using both SQL3 and ERA*.

5.1 Geometrical queries

(1) What are the respective coordinates of the cities A and C?
(2) What is the distance between the cities A and E?
(3) What are the cities belonging to the zone z defined with the rectangle {1<x<20;2<y<7}?
(4) And the cities not belonging to the zone z?

Query SQL3 ERA*

(1) Select Abscissa,Ordinate From Points
Where (Points.Id_Point=’A’) OR
(Points.Id_Point=’C’)

Ext ALL Points BY
InTown(Id_Point:int,{A,C}):Boolean;
Points REMOVE* Id_Point;
SHOW ALL INSTANCE ON Points;

(2) Select Distance(P1,P2)
From Points P1, Points P2
Where P1.Id_Point=’A’ AND
P2.Id_Point=’E’

Ext Points BY Eval_dist(Departure:char(10),
Arrival:char(10)):real,
SHOW ADT ON Points
Where Eval_dist(x,y) AND x=’A’ AND y=’E’;

(3)

Select P1.Id_Point
From Points P1

Where (1<P1.Abscissa<20) AND
(2<P1.Ordinate<7)

(3.1) : Res = Extract Point_in_zone
 From Points By
 inzone(p:char(10),S):boolean ;
(3.2) : Res = Res Remove* Abscissa, Ordinate ;
ShowAll ADT On Res Where true;

(4)

Select P1.Id_Point
From Points P1
Where Not inzone(P1.Abscissa,
P1.Ordinate);

(ShowAll ADT On Res(*)
Where Not inzone(p:char(10), S):boolean;

Notes .
§ In the case of simple questions, answers in ERA* are less condensed and more complex to be

expressed with regard to the language SQL3.
§ The operator InTown(Id_Point:int ,s:set):Boolean allows to identify whether the city Id_Point

belongs to the set of cities s
§ Eval_dist(Departure:char(10), Arrival:char(10)) expresses the distance between an arrival

city and a departure one.
§ Distance (P1 , P2) is a stored procedure or PSM [14] in the language SQL3.
§ In addition tgo query resolution, the solution to the query (1) in language ERA*, allows to

enrich the relation Points by the operator InTown below.
 Points=RELATION{Id_Point:int,Abscissa:int,Ordinate:int,
 OP InTown(Id_Point:int,{A,C}):Boolean } KEY{ Id_Point }
§ The operator InTown is necessary in other queries which make reference to any subset { A, C}

like : What are the roads containing the cities A and C ?
§ The S system represents the zone Z of the figure 2 where S={1< x <20 and 2<y<7}.
§ The signature of operator inzone(p :char(10),S :char(10)) :boolean, S :char(10) :boolean ;

express the following two propositions (p∈ S) and (p ∉ S) depending on returned value.

Treatment of the query (3)

(3.1) :Res=RELATION{Id_Point:int,Abscissa:int, Ordinate:int,OP inzone (C:char(10) ,S:
char(10)): boolean } KEY{ Id_Point }

S. Nait Bahloul, Y. Amghar, & M. Sayah 91

(3.2) : Res=RELATION{ Id_Point:int, OP inzone(C:char(10),S:char(10)):boolean } KEY{
Id_Point }. The body B_Res of the relation Res above is: B_Res = {{<Id_Point, char(10),C>,
<inzone,1>}, {<Id_Point, char(10),E>, <inzone,2>}};
The result B_Res extension is {(“C”,1),(“E”,2)}

5.2. Topological Queries

What is the transitive closure of the road set in zone Z does not intersect with points ofine Y=3?
What is the nature of the possible polygons? The steps of resolution of query (5), in the example
depicted in Figure 4, are :

a. Searching for roads in zone Z
b. Determination of roads not

passing via the point E
c. Determination of the

transitive closure
d. Deduction of polygons

Zone Z

P1

P2
Line Y=3

Es
pa

X

Y

A

C
E

D

3 18

3

12

Figure 4. Topological situations.

Indeed, roads in the zone Z (figure belo w) are defined by the set S such that :
S={{P1,C},{P1,P2},{P1,C,E},{P1,P2,E},{C,E},{C,E,P2},{P1,C,E,P2},{E,P2}} ; (a)
So roads do not pass via points of the line Y=3 represent the set SS such that:
SS={{P1,C},{P1,P2}} (see figure above); (b)
so the transitive closure SS* is: SS*=SS ∪ {P2,C}={{P1,C},{P1,P2},{P2,C}} ; (c)
We have deduced that there is only one polygon (P1P2C) of type triangle (d)

However, in the general case the resolution of query (5) has some particularities:

(1) The possibility of defining and extracting new domains from the concrete database already
defined;

(2) The definition of infinite objects but logically finite
(3) The definition of non-specified property a priori in the scheme of the object/relational

databas e (eg road length, the nearest road to a zone).

This highlights the choice of a database definition and interrogation language which can:

• generate types of complex data such as the set collections or the sets and their managements;
• express complex algorithms for the detection of the intersection points of roads or zones
• do the data logical computation to deal with the road network evolution in its topological

aspect
• define a great number of possible situations for the road network management. etc…

Consequently and following the limits of stored procedures which are provided in the module

SQL / PSM [14], it is important on the one hand to reinforce the object/relational model defined
in [1,2] by the operators Op (p1:t1 , p2:t2, pn tn) which can express complex situations under the
form of general algorithms and on the other hand to allow a relational computation in data domain
in the case of complex queries.

6. Discussion

The DBMS based on relational model is widely used today. This is essentially due to the
integration of a query language based on the relational algebra [5] which has undergone several
extensions to improve the relational model. Thus, new algebras are defined to meet the

S. Nait Bahloul, Y. Amghar, & M. Sayah 92

requirements of advanced databases for designers and users. In addition to the basic operations
(i.e.: Union, Difference, Cartesian product, Projection, Restriction, Join), these algebras,
qualified as extended algebra, group other derived operations (i.e.: Intersection, Division,
Complement, Unflat, External Join, Transitive closure, extension or others). Consequently, our
object/relational A*-algebra consists of relational operators based on the logic of first order and
algebraic extension operators . A* is composed of both operators called relational expressed in first
order logic and algebraic extension operators. In fact, a study of A* completeness and
consequently the elaboration of any language based on A* (i.e.: ERA* Language) depends on the
object/relational queries space to be expressed. From a purely relational point of view, A* is
complete in the sense where it offers the possibility of expressing any relational query (see
comparison in the Table1.). For an object or object/relational context, even A* completeness was
one of our main preoccupations the query language based on A* (ERA*) should be more
investigated. In fact, the expression of any object/relational query requires an object/relational
query language being able to contain and implement program. The first elements of this language
presented in this paper can be considered as a plat-form for the kernel of a strong and powerful
query language to manipulate logically (or) symbolically complex objects. In an object/relational
database scheme, a relation r of the heading H and body B is defined by:

}T,a,...,TOp,Op,T,a{H nn11 ><><><= with Op(x1,x2,…,xn):y and B={t/t is compliant with H; with
t={a1,T1,v1>,<Op,Top,Op (p1:t1, p2:t2, …, pq:tq): tn+1>,…,<an,Tn,vn>}; the relation r, in that
case, can be considered as a functional structure implying a part of the heading H with the rest of
the heading H. The subset of attributes in H that determines the rest of the heading is called a key
of the relation r. In the case of a functional dependence a1,a2,…,an-1 → an of the relation r
expresses a function f(a1,a2,…,an-1) = an. To show the interest of A* we compare basic operators
of A* with relational algebra while the extension operators of A* are compared on the one hand to
the specification language of object scheme, ODL [6] and to the object/relational language SQL3
on the other hand.

Basic operators in A*. Compared to the Codd's relational algebra, A*-algebra contains five basic
operators and two derived operators. We give in Table 1 the algorithmic structure to translate A*
into relational algebra. The set of basic operators of A* contains operators based on the first order
logic (e.g. : And *, Or*, Not*) besides an operator of deletion remove* and other one to rename
the attributes rename*. This last operator requires a boring calculation in the case of an extended
object relational model. Indeed, the change of the name of an operator Op implies the calculation
of all the tuples of which the operator Op makes reference. The derived operators Tclose* and
Compose* are based on the composition and transitive closure operations, defined by Codd. We
notice that the A* operators are a more simply way to express queries that necessitate many Codd
relational operators (see Table1).

Extensions operators in A*. The extension operators of the object/relational scheme are
classified into three categories: i) extensions to new type, ii) extensions to operators (global or
local) and iii) extension to extraction operators and/or data type generation. The extension
operators defined in the section 4.5 are compared in Table 2 (a & b) with those of the language
ODL (e.g., standard object scheme specification) and those of SQL3 (e.g., standard language for
object/relational database).

S. Nait Bahloul, Y. Amghar, & M. Sayah 93

A* operators Expression basing on relational algebra
a) Basic operators
REMOVE* If (∀ i ∈ {p+1,..,n}, ai is a basic type or an user type different from the type OP)

Then)(,...,1 rapaΠ Else (∃ i ∈ {p+1,..,n}, ai is of type Operator);

 1. ∀ j ∈ {p+1,..,n} / aj is an operator Op do (remove* OP);
 2.)(,...,1 rapaΠ ;

endElse
AND* If (∀ i ∈ {p+1,..,n}, ai is a basic type or an user type different from the type OP)

Then If ((Hr∩Hs) ≠ ∅) Then (r And* s)=(r X s)
 Else ((r And* s) remove* (a1,…,ap)=(r natural join s)
Else (∃ i ∈ {p+1,..,n}, ai is of type Operator);
 ∀ j ∈ {p+1,..,n} / aj is an operator do ∪ Op; (r And* s)=(r X s) giving res;
 res=res union (The operators Op) ; res=res remove* a1,…,ap;
endElse

OR* If (∀ i ∈ {p+1,..,n}, ai is a basic type or an user type different from the type OP)
Then If (Hr=Hs) Then (r Or* s)=(r union s)
 Else ((r Or* s) ≡((r union s) remove* (a1,…,ap)
Else (∃ i ∈ {p+1,..,n}, ai is of type Operator);
 ∀ j ∈ {p+1,..,n} / aj is an operator Op do ∪ Op; (r Or* s)=(r union s)=res;
 res=res union (The operators Op) ; res=res remove* (a1,…,ap);
 endElse

NOT* If (Hr=Hs) Then (r - s)=(r And *(Not*(s))) ;
RENAME* Null
(b) Derived Operators
r Compose* s If (∀ i ∈ {p+1,..,n}, ai is a basic type or an user type different from the type OP)

Then If ((Hr∩Hs)≠ ∅) Then (r Compose* s)=(r x s) ;
 Else (r Compose* s)=((r And* s) remove* a1,…,ap);
Else(∃ i ∈ {p+1,..,n}, ai is of operator type); begin
 ∀ j ∈ {p+1,..,n} / aj is of operator Op do ∪ Op; (r compose* s)=(r x s)=res;
 res=res union (The operators Op) ; res=res remove* (a1,…,ap);
 endElse

Tclose* (r) If (∃ai∈ Hr,∃aj∈ Hr / (ti=tj)) Then r+=Tclose*(r) ; r+=r+ union { Operators } ;
Table 1. A* versus relational Algebra.

A* Extension Operators Object / Relational DBMS (SQL3)

(1) EXT r ADD(an : tn+1) BY
Op(P1,:t1,p2:t2, …) : tn+1

§ Add attribute an+1 of type tn+1 in the mapping of r
§ Add values [An+1] such as: [An+1]=Op([p1],…,[pn]). Query SQL3 :
Alter Table Br add an+1 ;
Update Br set Br.an+1= Op([p1],…,[pn]);

(2) EXT r ADD(an : tn+1)

§ Add attribute an+by assigning values determined as Null to [an+1].
Alter Table Br add an+1 ;
Update Br set Br.an+1=null;
§ The above query acts on the relation body Br and not on the heading Hr of

the relation r. Then, any necessary treatment for the logical manipulation of
the relation r is not possible.

(3) EXT r BY
Op(P1,:t1,p2:t2, …) : tn+1
[begin <Op_body> end]

Not possible with SQL. The only possibility is to create trigger associated to a
new column, acting during updating of column.
1. Alter Table Br add an+1 ;
2. Create Trigger Trig_op on Br for an+1 /*implements statement Ext r */

(4) EXT ALL r BY
Op(P1,:t1,p2:t2, …) : tn+1
[begin <Op_body> end.]

1. Alter Table Br ADD (Op tn+1);
2. Create Function Op(p1 t1,p2 t2,…, p t) Return tn+1 is
 begin <Op_body> end;
3. Update Br set Br.Op= Op(p1 IN t1,…, p IN t)

(5) EXTRACT r
FROM (r1, r2, …, rp)
BY Op(p1:t1,p2:t2,…)

operator not exist in SQL3. So, it should be interesting to integrate this
possibility into SQL3 : Create a relation r, from relations r1,r2,…,rp, by using
the operator Op. A such statement could be:
create relation r by Op(p1 IN t1,p2 IN t2,…, p IN t) is (a1:T1,a2:T2,…,an:Tn);

(6.a) SHOW [ALL] ADT
[ADT_name> ON r
WHERE <conditions>

This generation operator of the data abstract types is not available on SQL3
because it concerns the relation headings in the object/relational model.

(6.b) SHOW[ALL]
INSTANCE ON
<ADT_name>
WHERE <conditions>

§ This object generation operator is not available on SQL3 because it
concerns relations generated from abstract data types or ADTs.

Table 2a. A* versus query language SQL3.

S. Nait Bahloul, Y. Amghar, & M. Sayah 94

A* Extension Operators Object DBMS (ODMG ODL)
(1) EXT r ADD(an : tn+1) BY
Op(P1,:t1,p2:t2, …) : tn+1

 interface Hext :Hr
(extent Bext)
 { attribute tn+1 an+1; void init (tn+1 an+1);} ;
 void init (tn+1 an+1)
{ Select e.an+1 From e in Bext set_value(Op(p1:t1,p2:t2,..,p:t): an+1) };
/* Keywords in bold correspond to ODL and OQL languages of the ODMG
system.. The inheritance exploitation (ie: Hext Hr) allows to carry out this
algebraic extension. It is important to note that the computed type extension
operator is integrated into the ODBMS according to the programming
language chosen for object interface specification. Consequently, the
realization of such an operator is limited by the weaknesses of object models
concerning the data interrogation language */

(2) EXT r ADD(an : tn+1)

Variant of the operator (1), this operator allows to extend a type defined by a
heading H. Indeed, Hext extension of the heading Hr is defined by :
 interface Hext :Hr
(extent Bext) { attribute tn+1 an+1; void init (tn+1 an+1);} ;
void init (tn+1 an+1)
{ Select e.an+1 From e in Bext set_value(nil:an+1)};

(3) EXT r BY
Op(P1,:t1,p2:t2, …) : tn+1
[begin <Op_body> end]

§ interface Hext :Hr
 (extent Bext) { attribute tn+1 Op; tn+1 Op(p1:t1,p2:t2,…,p:t) ; [begin
<Op_body> end.]}
The nature of Op determines the nature of the extension EXT.Op applied to
the Hext domain allows either to specialize the latter (section 4.5.3 a) or to
redefine it by grouping types included in Hext (section 4.5.3 b) or unflat the
type Hext into its elements or basic domains (section 4.5.3 (c)). We note in
that case that the scheme manipulations are not possible in the object model
OMG. Still, the effective manipulation of objects as domains or types requires
a conception of objects on the basis of the set theory. Propositions (1, 2 and 3
), quoted above, allow to preserve the relational concepts by integrating the
operator notion.

(4) EXT ALL r BY
Op(P1,:t1,p2:t2, …) : tn+1
[begin <Op_body> end.]

§ Unlike the operator Op in the extension (3) above, the operator Op in that
case acts exclusively on the body Bext of the relation r such as :
 inter face Hext :Hr (extent Bext) {
attribute tn+1 Op; tn+1 Op(p1:t1,p2:t2,…,p:t) ;
[begin <Op_body> end.]}

(5) EXTRACT r
FROM (r1, r2, …, rp)
BY Op(p1:t1,p2:t2,…)

§ interface Hr :Hr1,Hr2,…,Hrp
 (extent Br) { [begin <Op_body> end.]}
The operator Op extracts the object Hr from many objects Hr1,Hr2,…Hrp.

(6.a) SHOW [ALL] ADT
[ADT_name> ON r
WHERE <conditions>

§ This operator does not exist in the ODL, because it allows a computation
on the database scheme and its evolution (see section 4.4.6 (a)).

(6.b) SHOW[ALL]
INSTANCE ON
<ADT_name>
WHERE <conditions>

§ For all x in B<name_ADT>:x.<Conditions>=True
The variable x represents instances corresponding to a given heading H <
ADT_name >. Structure For all.. In ; is adopted according to the language
ODL of the ODM (see section 4.4.6 (b)).

Table 2 b. A* versus object description language (SQL3).

7. Conclusion

The object/relational model extension proposed in this paper, with the operators Op (p1:t1 , p2:t2,
pn tn) is inspired by Darwen and Date's formalism. The definition of any relation r according to
the form <Hr,Br> where Hr is a heading and Br is the body of r, has allowed operating
independently on the scheme of object/relational data base from concrete relations. We have
shown the interest of such an extension of algebraic operators, comparing to stored procedures or
PSM [14], for application domains in which data representation necessitates complex types. The
definition of a fragment of language ERA* to exploit geometrical and topological data in a road
network, has shown its importance. This language can be considered as a new possibility of
SQL3, a functionality dealing with the complex algorithms of computation, modeling and
querying for new applications. Indeed, on the one hand, the operator OP in the definition
Hs={<a1,t1>,<an tn>,<OP1,TOP>} is useful in the enhancement of object/relational database
scheme and on the other hand, the extended algebraic operators permits to further improve the
data querying language. Consequently, the undertaking of a prototype ORDBMS and its
integration within RDBMSs will allow developers to deal with new queries in database.

S. Nait Bahloul, Y. Amghar, & M. Sayah 95

8. References

[1] H.Darwen and C.J.Date. Foundation for Object/Relational Database: The third manifesto.

Addison Wesley, 1998.
[2] C.J Date, Hugh Darwen, Foundation for Future Database Systems: The Third Manifesto ,

Hardcover, Pearson Education 2000.
[3] P.Seshadri. Enhanced abstract data types in object-relational databases. The VLDB

Journal, 7(3): 130-140, 1998.
[4] M. Stonebraker, P.Brown. Object-relational DBMSs: Tracking the Next Great Wave. 2e,

Morgan Kaufmann, 1999.
[5] E.F.Codd. A relational data model for large shared databanks. Communications of the

ACM, 13(6): 377-387, 1970.
[6] R.G.G.Cattel. The Object data standard ODMG 3.0 , Morgan Kaufmann, 2000.
[7] Nguyen bahao, Nait bahloul safia, A.E. Harmanci and E.Gelenbe(Eds), Sophistical queries to

relational and object oriented databases; Proc. of ISCIS, pp 687-695; Turkey 1990.
[8] M.P. Atkinson, et al. The OODBS manifesto. DOOD, page73-94, 1989.
[9] H.Darwen, C.J.Date. The third manifesto. SIGMOD Record, 24(1):39-49, 1995.
[10] W.Kim. Modern database systems. The Object Model, Interoperability, and Beyond.

Addition-Wesley, pages 238-254, 1995.
[11] G. Lausen and G.Vossen. Models and language of object-relational databases. Addition-

Wesley, 1997.
[12] W.Kim. Object-oriented database system: Promises, reality and future. VLDB Conference,

pp 676-687, 1993.
[13] W.Kim. A model of queries for object-oriented database. VLDB Conf., pp 423-432, 1989
[14] J. Melton. Understanding SQL’s Stored Procedures. Morgan Kaufmann Publisher 1998.
[15] L.Libkin and L.Wong. Query language for bags and aggregate function. Journal of

Computer and System Sciences, 55(2):241-272, 1997.
[16] G. Ozsoyoglu, Z.M.Ozsoyoglu, V.Matos. Extending relational algebra and relational

calculus with set-valued attributes and aggregate functions.ACM TODS,12(4) , 1987.
[17] B.Jaeschke, H.J.Schek. Remarks on the algebra of non first normal form. PODS, pp124-138,

1982.
[18] H.J.Schek, M.H.Sholl. The relational valued-attributes. IS, 11(2):137-147, 1986.
[19] L.S.Colby. A recursive algebra for nested relations. IS, 15(5):567-582, 1990.
[20] M.A.Roth, J.E.Kirkpatrick. Algebras for nested relations. Data Engineering, 11(3):39-47,

1988.
[21] H.F.Korth, M.K.Roth. Query languages for nested relational databases. In Nested Relations

and Complex Objects in Databases. LNCS 361, pp 190-204, 1989.
[22] M.Levene, G.Loizou. The nested universal relation data model. Journal of Computer and

System Sciences, 49(3):683-717, 1994.
[23] M.Gyssens, D.Van Gucht. A comparison between algebraic query languages for flat and

nested databases. Theorical Computer Science, 87(2): 263-286, 1991.
[24] S.Abiteboul, C.Berri. The power of languages for the manipulation of complex values. The

VLDB Journal, 4(4):727-794, 1995.
 [25] R.Hull. A survey of theoretical research on typed complex database objects. J.Pareadens,

Ed, Academic Press, pp 193-256, 1987.
[26] J.Van Den Bussche, J.Paredaens. The expressive power of complex values in object-based

data models. Information and Computation, 120(2):220-236, 1995.
[27] F.Bancilhon and S.Khoshafian. A calculus for complex objects. PODS, pp 53-59, 1986.
[28] T.Leung, et al. The AQUA data model and algebra . DBPL, pages 157-175, 1993.
[29] S.Cluet, G.Moerkotte. Nested queries in object bases. DBPL, pp 226-242, 1993.
[30] D. Gross-Amblard. Approximation dans les bases de données contraintes Ph.D.Thèse 2000.

