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Abstract 

 
The object relational data model presents both the advantage of Codd's relational calculus power 
and the characteristics of the object orientation.  Two major approaches have been adopted to 
satisfy the requirements of new databases applications. A first approach integrates the object 
characteristics into the new data models with the specification of data constraints and the 
definition of interrogation language. The second one, called evolutionary approach, keeps Codd's 
data model enriching with adequate concepts for the coverage of current database applications. In 
this approach and comparatively with studies presented by Melton, Date and Darwen have 
proposed the foundations of the object relational model. So, A-algebra  consisting of first order 
logic operators has been defined to express various classes of queries in object relational database. 
To contribute to the improvement of relational/object models and agebra this paper presents an 
extension of object relational model to new types generated by operators and the related A*-
algebra. These operators, called Op, offer a means to specify domains as functions and permit 
consequently to increase the data model expressiveness. To support this extension, we propose a 
new data query language, or more precisely a logical data calculation A* as an adapatation of the 
A-algebra. Our A*-algebra contains algebraic operators which are able to support this new 
extension.  
 
Keywords:  Model, Object relational, Database, Models, Algebra, Extension, Operator, A*. 
 
1. Introduction 

 
The object relational data model [1,2,3] presents both the advantage of Codd's relational calculus 
power [5] and the characteristics of the object orientation [6,10]. Two major approaches have 
been adopted to satisfy the requirements of new databases applications. A first approach widely 
illustrated in [3,6,13] integrates the object characteristics into the new data models with the 
specification of data constraints and the definition of interrogation language. This approach is still 
considered as important research area. The second one [2,16], called evolutionary approach, keeps 
Codd's data model enriching with adequate concepts for the coverage of current database 
applications. In this approach and comparatively with studies presented by Melton [14], Date and 
Darwen have proposed in [1,2] the foundations of the object relational model. So, A-algebra  
consisting of first order logic operators has been defined to express various classes of queries in 
object relational database.  

Database management systems [7] had to deal with complex, heterogeneous, temporal and 
available data on many sites. Two major tendencies have born to meet the new requirements of 
database applications: the object oriented database approach [8,9,10,11] and the object /relational 
database approach [1,2,3,4].  The object/relational database approach has to preserve inherent 
advantages of the relational model, which offers two language categories: an algebraic language 
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based on relational algebra and a relational calculation language based on the logic of first order. 
The logical aspect of the relational calculation allows the user to specify a query in a declarative 
way. In particular, the user does not need to know how data are physically stored in the database. 
Besides, relational algebra shows more easily some equivalencies between the algebraic language 
expressions. The power of language expression is an important question. The limits of relational 
algebra expressiveness are well known. One of examples is the operator of transitive closure of a 
relation that cannot be expressed with relational algebra operators. Relational algebra is also 
known by its limitation to express some simple and useful queries, which are easily expressed in 
the language SQL: for example, the queries like those asking for the calculation of annual salary 
from the monthly salary of employees. Indeed, it is admitted [15,16] that any query requiring an 
arithmetical calculation or functions of SQL aggregates is not possible with the relational algebra. 
Motivated by the need of a large coverage, researches have been undertaken in order either to 
increase existing algebras or to define other families of algebras such as the algebras for nested 
relation models [17,18,19,20,21,22,23], the algebras for structured value models [24,25,26,27] 
and the algebras for object models [12,28,29]. One the interests of these researches is the 
formalization of the object/relational model and the proposition of a object/relational algebra [1, 
2] called A . for the formal object/relational model the A-algebra has allowed the identification of 
adequate operation types . However, the query language design related to these data models 
consists of defining algebraic operators. These operators are based on the A-algebra to which the 
extension operators must be integrated. They facilitate both the description and interrogation of 
complex data rich in symbolic representation, but requiring a prohibitive combinatorial 
calculation during their manipulations. The constructors, used in query languages based on the A-
algebra, such as D language [1], adopt the set theory for the data specification and the first order 
logic calculation to manipulate such data.  

In this paper, we propose to enhance object/relational model through the notion of domain 
generated by function or operator and to develop an algebra noted A* as an extension of A-
algebra. The query language based on A* should be still considered with regard to the power of 
expression and calculation which is offered by a standard query language like SQL3. A*-algebra , 
is composed of logical operators (i.e.  not *, or*, and *, compose *) and extension algebraic 
operators  (i.e. : ext.. add ..by). Both are specific to the requirements of the new object/relational 
model. The main idea in this paper consists of integrating within a object/relational scheme, types 
defined by operators. These types built likewise, are not generated by constructors but defined by  
operator Op as being couples <Op, TOp> and where TOp is the type returned by the function or 
constructed by the operator Op. Then A* allows the manipulation of complex entities requiring 
symbolic representations in their definitions such as in the geometrical and spatial databases. 
These latter, processing the shape and position of objects in space and time constitute an 
application domain, which evokes new query classes as, topological queries and geographical 
queries, aggregate queries where a value is associated to a point set. The treatment of such query 
classes leads to different problems, such as the choice of data representation model, the data 
interrogation and transformation language as well as algorithm complexity of such 
transformations. In [7], extension operators have been developed to take into account 
sophisticated queries which deal with geometrical figures in re lational or ext ended relational 
context. In [30], geometrical queries are resolved in polynomial time in a constraint database 
context. In A*, geometrical queries are tackled in an extended object/relational database context 
to the concept of domain generated by operator or function. Thus, A* containing extension 
operators is carried out by the query language ERA* for the querying of object / relational 
databases.  

This paper is oraganized as follows. In section 2, a typical example on a road network 
connecting geographic zones of polyedrical form is presented. This example will il lustrate our 
concepts. Section 3, concerns Date and Darwen’s approach related to the formalization of the 
object/relational model as well as A-algebra for the manipulation of data in such models. In 
sections 4 and 5 which are the core of the paper, we detail the extension of the object/relational 
model and the specification of A*. In addition elements about ERA* (Extended Relational A* 
language) are given. Section 6 is a discussion which compares A* with the relational algebra on 
the one hand and with specification and querying languages of object database schemas (i.e., 
ODL, OQL) on the other hand. This paper ends with section 7, which concludes our work. 
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2. Illustrative example 
 

Let us consider a network of roads in a geographical space and let us interest to topological 
queries. The matter is to treat the nature of the road network in the neighbourhood of one or 
several cities. We evaluate, through the metrical query, the characteris tics of road or geographical 
networks such as the different road accesses of a given city. Such query classes comprise 
particular constraints like the intersection point of different road segments, evolutions of the road 
network in a region or a given zone, the management and transformation of a such road network 
and the exploitation of new geographical zones expressed under the form of geometrical figures 
(Figure 1). However, major difficulty for the resolution and management of such queries implies 
the necessity to have a database language rich in data modelling and querying. Also, this language 
has to be effective in the query resolution regarding to both the quantity of available numerical 
data and the nature of the calculation carried out. We consider, in the rest of this paper, a case of 
road network where the convex regions A, B, C are simple geometrical figures such as rectangles, 
square, triangles and polygons (Figure 1). So the road network is represented and carried out, in 
language D of Date and Darwen [1, 2], through the object/relational database named 
ROAD_BASE: 

 
ROAD_BASE 

Points = RELATION{Id_Point char(10),Abscissa real,Ordinate real } KEY { Id_Point } ; 
Road_ Segments= RELATION{ Id_seg  int, first_seg char(10), last_seg char(10)} KEY { Id_seg }; 
Roads = RELATION{ Id_path   int, Road  SET(int) } KEY { Id_path}; 
Polygons =RELATION{ Id_poly int, Polygon SET(int)} KEY { Id_poly } ; where SET is a predefined type within the 
DBMS  

 
Finished roads 
 
Roads under 
construction 

 
                                                Figure 1: Road network 
 
Notes:  
§ The road network is defined partially, but sufficiently regarding to our proposition. 
§ Relations are expressed according to the Date and Darwen’s formalism [1, 2]. 
§ The position of a city in the road network is represented with a point belonging to the relation 

Points.  
§ Id_path  identifies the road, the set {Id1, Id2, Idn} defines the respective identifiers of 

segments of this road. 
§ Id_poly identifies the polygon, the set {Id1,Id2,…,Idm} defines the respective identifiers of 

segments constituting a given polygon. 
§ Relation Road_ Segments represents the segments that board the cities defined in the relation 

Points. Attributes first_seg and last_seg are the respective identifiers of departure and arrival 
points in a segment identified by id_seg. 

§ The relation Roads specifies all the possible roads between the different cities in the relation 
Points; the road being a set of road segments. 

§ The relation Polygons defines the set of the convex figures in the road network. 
 
Let us consider now a given state of the database ROAD_BASE containing the five different 

cities A, B, C, D, E in a space S (Figure 2). A relation r, in the Date and Darwen’s formalism is 
defined by two sets representing respectively the heading and the body of r.  The heading Hr 
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specifies the scheme of the relation whereas the body Br contains the tuples  corresponding to Hr. 
So, the relations Points, Road_Segments, Roads and Polygons are defined as follows: 

 
H_Points = {<Id_Point, char(10)>, <Abs, real>, <Ord, real>}; 
B_Points = {{<Id_Point, char(10), A>, <Abs, real, 6>, <Ord, real, 12>},  

{<Id_Point,char(10),B>,<Abs, real,12>,<Ord, real,10>},  
{<Id_Point, char(10), C>, <Abs, real, 3>, <Ord, real, 6>},  
{<Id_Point,char(10),D>,<Abs, real,20>,<Ord, real,15>},  
{<Id_Point, char(10), E>, <Abs, real, 18>, <Ord, real, 3>}}; 

 
H_ Road _Segments = {<Id_seg, int>, <first_seg, char(10)>, <last_seg, char(10)>}; 
B_ Road_Segments= {{<Id_seg, int, 1>, <first_seg, char(10), A>, <last_seg, char(10), B>},  

{<Id_seg, int, 2>,  <first_seg, char(10), A>,<last_seg, char(10), D>},   
{<Id_seg, int,3>, <first_seg, char(10), E>,<last_seg, char(10), A>},   
{<Id_seg, int, 4>,<first_seg, char(10), B>,<last_seg, char(10), D>},   
{<Id_seg, int, 5>,<first_seg, char(10), C>,<last_seg,char(10), E>},  
{<Id_seg, int, 6>,<first_seg, char(10), E>,<last_seg, char(10), D>},  
{<Id_seg, int, 7>,<first_seg, char(10), D>,<last_seg, char(10), A>},…}; /* The segment 
AD is different from the segment DA Because the departure and arrival segments are 
different */  

 
H_Roads= {<Id_path,int>,<Road,SET(int)>} ; 
B_Roads= {{<Id_path,int ,10>,<Road,SET(int),{1,4}>},    /* Road {A,B,D} */ 

{<Id_path,int,20>,<Road,SET(int),{3,2}>},   /* Road {E,A,D} */ 
{<Id_path,int,30>,<Road,SET(int),{5,3}>},   /* Road {C,E,A} */ 
{<Id_path,int,40>,<Road,SET(int),{5,3,1,4}>},  /*Road {C,E,A,B,D} */ …}  

 
H_Polygons= {<Id_poly ,int>,<Polygon,SET(int)>} ; 
B_Polygons={{<Id_poly,int ,100>,<Polygon,SET(int),{1,4}>} ,   /* Triangle ABD */  

{<Id_poly ,int,200>,<Polygon,SET(int),{5,6,7}>}}  /*Polygon CEDA*/ } 
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Figure 2  Road network 
  

Let us note in this example (Figure 2) that we have considered data types related to the 
management and processing of geometrical data in a network of roads. Indeed, and in order to 
take completely into account the quantity of available data in the database ROAD_BASE; it is 
necessary to express relative queries to many situations in the road network such as: 

(1) What are the respective coordinates of the cities A and C? 
(2) What is the distance between the cities A and E? 
(3) What are the cities belonging to zone z? 
(4) What are the cities not belonging to zone z? 
(5) What is the transitive closure of the road set in zone z do not cross points of the line 

Y=3? Deduce the nature of the possible polygons? 
(6) What are the separate roads connecting the cities A and B? 
(7) What are all the roads that cross  the cities A, B and C? 
(8) What is the shortest road connecting zones z and z1? 
(9) What are all the roads connecting zone z and z1 and not passing via zone z2?  

(10) What is the shortest circuit accross all the cities?  Etc… 
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The resolution of such queries requires:  
§ on the one hand the choice of a data model capable to represent complex data types (e.g.: 

roads, convex regions, circuits) and several situations in a road network (e.g.: separate roads, 
the shortest road, roads in a region, intersection of regions, the circuit accross all the cities, the 
cities not belonging to a road etc.) and  

§ on the other hand the definition of a query database language which can deal with the quantity 
of available numerical data in such applications.  

 

3. Date and Darwen’s Approach 
 

Before starting the resolution with A*, we present in this section Date and Darwen’s formalism as 
well as A-algebra proposed in [1, 2]. Date and Darwen consider that SQL3 does not correspond to 
an object/relational language in terms where the notions of objects and nested tables consist of a 
logical confusion between the class type, defined in Object Oriented languages, and the relation 
concept in relational databases (i.e. relation = class, the equation is confused). Indeed, Date and 
Darwen note that the class is semantically equivalent to the domain or type and criticize research 
studies on the evolution of the Codd's relational model approaching a relation to a class. So, 
unlike the data model developed by the group ODMG in [6] and where the class concept is 
inherited from object-oriented languages, Date and Darwen propose a convivial object/relational 
extension of the Codd's relational model via domain or type generators (i.e. extensions to object 
characteristics are realized on the basis of the type theory and where equation Class =Domain is 
adopted). 

Date and Darwen propose a relational algebra named, A, slightly different from Codd's studies 
[5] in terms where it is based on the first order logic calculation. Some operations of the Codd's 
relational algebra have been revisited for the coverage of the new orientation of A-algebra. 
Indeed, a relation r is defined with its heading Hr and body Br. The heading represents the 
schema of the relation r and is defined as a set of couples <a,T> (with a an attribute and T the 
attribute type), while the body Br is the set of tuples. A tuple t being defined as a set of triplets 
<a,Ti,v> with <a,Ti> is the Hr element and v the value of the attribute a.  

 
3.1. Formal definitions   
 
Let be a relation r, an attribute a, a type T of the attribute a and v a value of the type T; 
 
(a) Heading: A heading Hr is a set of ordered pairs <a, T> for each attribute a of r. So, two pairs 
<a1,T1> and <a2,T2> of r are such as a1? a2 (i.e.: the names of attributes are different). 

Example: The heading of the relation Points quoted above is: 
H_Points = {<Id_Point, char(10)>, <Abscissa, real>, <Ordinate, real>};  

 
(b) Tuple : Let tr be a tuple and Hr a  heading; The tuple tr is a set of ordered triplets <a,T,v> 
where each attribute ai of Hr is associated with a triplet <ai,Ti,v> . 

Example: t1={<Id_Point,char(10),C>,<Abscissa, real,3>,<Ordinate, real,17>} ; 
t1 is a tuple of the relation Points realizing  the city C which is located at coordinates  (x=3,y=17). 

 
(c) Body: A body Br of a relation r is a set of tuples t. However, there may be tuples tj 
corresponding to the heading Hr without tj∈Br. 

Example: Let tj= {<Id_Point, char (10), X>, <Abscissa, real, 40>, <Ordinate, real, 28>}, 
 
We notice that the tuple tj corresponds to the heading H_Points in the relation Points defined 

in the example ROAD_BASE  above; but tj does not belong to the body B_Points of the relation. 
 
Remarks: 
(1) Each heading Hr and body Br is viewed as a set. 
(2) A subset of heading Hr (respectively of body Br) is heading Hr’ (respectively of body Br’). 
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The object/relational A-algebra , defined in [1,2], allows a logic calculation of first order on the 
heading Hr independently from the one carried out on the body Br. Indeed, each algebraic 
operator in A, applied to a relation r, considers semantic actions on Hr different from those 
applied to Br.  
 
3.2. Operators of the A-algebra 
 
A-Algebra is essentially based on the set theory and consists of five basic operators AND, OR, 
NOT, RENAME, REMOVE and of two derived operators COMPOSE and TCLOSE . The macro 
operator COMPOSE considers the composition of relations as a generalization of the composition 
of functions. The operator TCLOSE, based on the Codd’s algebra defines explicitly the operator 
of transitive closure. Let us consider two relations r and s such as  ),(),( BsHssandBrHrr ≡≡  with 
Hr, Hs and, Br, Bs respectively headings and bodies of relation’s  r and s.  
 
AND Operator . The AND operator, is a conjunction of two relations r1 and r2. The heading Hs 
of the resulting relation s is the union of the respective headings Hr1 and Hr2 of the relations r1 
and r2 while the body Bs of s is a set built by conjunction of some  tuples in the respective bodies 
Br1 and Br2 of the relations r1 and r2. We note that this operator corresponds, in Codd's algebra, 
to a natural join of the relations’ r1 and r2.  

2r AND 1rs ← ; 2Hr1HrHs ∪= ; ))}2tr1trts()2Br2tr()1Br1tr((2tr,1tr/ts{Bs ∪=∧∈∧∈∃∃=  
 
OR Operator. The OR operator, is a relational disjunction, generalization of the operation Union 
in the Codd's relational algebra. So, Hs, the heading of the relation result s, is the union of the 
headings Hr1 and Hr2 of the input relations r1 and r2. The body Bs of s is a set corresponding to 
the disjunction of tuples in the respective bodies Br1 and Br2 of the relation’s  r1 and r2. 

2r OR 1rs ← ; 2Hr1HrHs ∪=  ; ))}2tr1trts())2Br2tr()1Br1tr(((2tr,1tr/ts{Bs ∪=∧∈∨∈∃∃= .  
The operator OR, in Date and Darwen’s A-algebra, allows to treat the headings and bodies 

separately and has not an equivalent operator in the Codd's relational algebra. 
 
NOT Operator. The operator NOT, expresses the complement of a relation r noted (Hr, Br). The 
heading Hs of s is equal to the heading Hr of r; while the body Bs of s, contains all the tuples ts, 
which do not belong to Br, body of r.  

)r(NOTs ← ; HrHs=  ; ))}trts()Brtr((tr/ts{Bs =∧∉∀= tr  being a tuple belonging to Br. 

 
Operator RENAME. The operator RENAME allows the renaming of attribute named a in r by 
another attribute called b in the resulting relation s without changing its type T. So, the heading 
Hs of s is identical to the heading Hr of r except the pair <a,T> that is  replaced by <b,T>. The 
body Bs is formed by the set of tuples tr in Br where <b,T,v> replace all the triplets <a,T,v>. 

)b,a(RENAME rs ←  ; },{}},{{ ><∪><−= TbTaHrHs ; 
}))},,{}},,{{(),,()()((,/{ ><∪><−=∧>∈<∧∈∧∈∃∃= vTbvTatrtstrvTaTvBrtrvtrtsBs  ;  

We notice that the operator RENAME is not necessary in Codd's algebra because it does not 
act on the semantics of the concrete database.  
 
REMOVE Operator. The operator REMOVE generates a relation by eliminating a given 
attribute a, of a relation r. This operation is equivalent, in Codd’s algebra, to the projection of r on 
all the attributes of r except for a given attribute a. So, the heading Hs is equal to Hr, the heading 
of r, minus the pair < a, T >. In this case, the body Bs of s, is a subset of tuples tr of r 
corresponding to the heading Hs. The first order logical calculation, well adapted to A-algebra, the 
operator REMOVE acts separately on heading Hr and the body  Br of the relation r. This 
possibility of calculation allows enhancement of the possibilities of transformation of database 
scheme and supplies a better exploitation of concrete relations out of the headings, which they 
support. 

a REMOVE rs ← ;  where <a,T> ∈ Hr, },{ ><−= TaHrHs  ; 

}))},,{(),,()()((,/{ ><−=∧>∈<∧∈∧∈∃∃= vTatrtstrvTaTvBrtrvtrtsBs  ; 
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COMPOSE Operator. The COMPOSE  operator, is defined by the combination of the operators 
AND and REMOVE  such as: 
 

2r COMPOSE 1rs ←  ; 1a REMOVE 2a REMOVE...an REMOVE )2r AND 1r(s ≡ ; 

}},,...,2,2,1,1{)21{( ><><><−∪= tnantataHrHrHs  ; 

}}))},...,1{/,,{)21(())22()11(((,2,1/{ anaaivtiaitrtrtsBrtrBrtrtivtrtrtsBs ∈><−∪=∧∈∨∈∈∀∃∃= . 

 
Notes: 
§ a1, a2, … an are the common attributes to the relations r1 and r2 (n > =0). 
§ The COMPOSE  operator does not exist in Codd's algebra. 
§ The order of the Remove in the definition of COMPOSE operator is not important because it 

is concerned with the same structure of the set type. 
§ If n=0 then (r1 COMPOSE r2) ≡ (r1 AND r2) and the relation (r1Χr2) is included in the  (r1 

AND r2) body; where (r1Χ r2) is the cartesian product of r1 by r2 in the Codd's relational 
algebra. 

 

The body Bs of the result relation s in the case of the operators AND and OR cannot contain 
tuples tr already existing in one of the operand relations r1 or r2. The heading Hr is defined by Hr 
= Hr1∪ Hr2. 
 
TCLOSE Operator . Compared to the Codd's relational algebra, A-algebra includes an explicit 
operator for the transitive closure named TCLOSE. Indeed, given that a relation r containing two 
attributes X and Y of type T, the transitive closure TCLOSE (r), following attributes X and Y, is a 
relation r+ whose the heading Hr+ is the same of the heading Hr. On the other hand the body  Br+ 
is such as : 
 

rTCLOSEr ←+  ; HrHr =+  ; 

,Ssequence/ttuple{BrBr ∀∪=+
BryTYznTXzTYzTXzTYxTXS ∈><><><><><><= }),,,,,{};.;2,,,1,,{};1,,,,,{(

}))(}),,,,,{(( +∈∧><><=⇒ BrtyTYxTXt  with three propositions (1), (2) and (3) as being equivalent.  
(1) The tuples +>∈<>< BryTYxTX ,,,,,  
(2) There is a sequence of values z1,z2,…,zn  having the same type T  such as : 

BryTYznTXzTYzTXzTYxTX ∈><><><><><>< },,,,,{};.;2,,,1,,{};1,,,,,{  
(3) There is a way between tuples <X,T,x> and <Y,T,y> in the body Br . 
 
Notes: 
§ for the operations (r1 OR r2) and (r1 AND r2), )21())22,()11,(( TTHrTaHrTa =⇒>∈<∧>∈<  ; 
§ the operation (r RENAME(A,B)), )),(()),(),(( baRENAMErrHrTbHrTa =⇒>∈<∨>∉<  .  
§ in the case of TCLOSE , )()( +⊂⇒∪=+ BrBrEBrBr with E: set of the added tuples.  
 

4. A*: New algebra for Object/Relational Model 
 
In this paper, we  consider that a domain or type is specified by an operator Op which would be 
equivalent, in our case, to a function that returns a value belonging to a domain or type. In the set 
of the triplets })tn:pn,...,2t:2p,1t:1p(Op,TOp,Op{ ><  Op represents a function, TOp the type returned 
by Op and Op(p1,…) the function signature. More generally, Hr={<a1,t1>,<a2,t2>, …, <an,tn>, 
<Op1,Top1>, …,<Opn,TOpn>} is a header where an,...,2a,1a  are attributes associated with the 
relation r; t1, t2, …, tn types assigned respectively to attributes ai; Op1,Op2,…,Opm are the 
operators domains definitions. TOp1, TOp2,…, TOpm are the respective types returned by the 
operators Opi, i = 1, …m. 
 
4.1.  Definitions  
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Comparing with notions presented in Section 3, the concepts of heading, of tuple and of body are 
redefined according to our approach. 
  
Definition 1. A heading Hr is a set of ordered pairs <X,Tx> where X is an attribute a or an 
operator Op. The type Tx is either a predefined type or a type of operator result.  
 
Definition 2. Let Hr be a heading and t a tuple; The tuple t is a set of ordered triplets <X, Tx, 
v> corresponds to each attribute or operator X in Hr. In this case where X is an operator Op, the 
value v is defined by ])pn[],...,1p([Opv = .  
 
Definition 3. A body Br of a relation r is a set of tuples t containing tuples tj such as 

>=< )pn,...,1p(Op,TOp,Optj  where p1,…pn are parameters assigned by value or by variable . 
 

Example of some types:  
a. < /*operator Op:*/ Define_Road, /* type TOp :*/Set (int), /* Signature of Op:*/ 

 Define_Road (Id-departure: char (10), Id-arrival: char (10)) >  
b. < Define_Road, set (int), Define_Road(A,C)>   /* A, C are cities, see Figure 2. */ 
c. <inverse,real,inverse(x:real)> ≡ <inverse,real,(1/x)>   /* Parameters by variable */   
d. <inverse,real,inverse(4)> ≡<inverse,real,0.25>   /* Parameters by value */ 

We note that the operator Op can return an abstract data type (a), an instance of type (b), a 
function (c) or a value (d) according to the input parameters.  
 
Definition 4. An operator )t:p,...,t:p(Op nn11  is a scalar function or domain constructor. 

 
Definition 5. An abstract data type, ADT, is a heading of a relation r named Hr, which contains at 
least a couple <Op, TOp> and where the operator Op is a generator of the domain TOp. The 
tuples tr corresponding to heading Hr are called instances. 
 
4.2 Corollaries 
 
Following the definitions defined above we deduce the notions of instances for an abstract data 
type and equivalence between two tuples T1 and T2.   
 
Corollary 1. an instance of an abstract data type defined by the heading 

},,...,,,,{ 11 ><><><= nnadt TaTOpOpTaH  is a tuple t defined by:  

},,,...,:):,...2:2,1:1(,,,1,1,1{ 1 ><><><= + vnTnanttptptpOpTOpOpvTat n . 
 
Example :T ={<id_ch,int,10>,< Define_Road, set(int), Define_Road(A,D)>}. The road identified 
by id_path=#10 between the city A and the city D is  {A,B,D} ; /* See Figure 2. */ 

 
Corollary 2. Let H be a heading defined by },{ ><= TiXiH where },{ OpAttributeXi∈ . Two tuples 
T1et T2  corresponding to the heading H are equivalent if and only if:  

))()((,,,,, 21 uvbaTutbTvta =∧=>∈<∃>∈<∀  where ,T)t:p,...,2t:2p,1t:1p(1Op,1TOp,1Op 1>∈<∀  
,2T)tm:qm,..,2t:2q,1t:1q(2Op,2TOp,2Op >∈<∃

)))tm:qm,..,2t:2q,1t:1q(2Op)t:p,...,2t:2p,1t:1p(1Op()2TOp1TOp()2Op1Op(( ≡∧=∧=⇒  
 
 
4.3 Example of an extended data model 
 
Let us consider the illustrative example of the section 2, the database ROAD_BASE* in the new 
object/relational model is as follows: 
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ROAD_BASE * 
Points = RELATION{ Id_Point char(10), Abscissa real, Ordinate real } KEY{ Id_Point } ; 
Road_Segments = RELATION{Id_seg  int,   first_seg char(10),   last_seg char(10)}   

KEY{ Id_seg }; 
Roads = RELATION{Id_path   int, OP1 Road(Id-departure char(10),Id-arrival char(10)): 

SET(int)  KEY { Id_path}; 
Polygons = RELATION{ Id_poly int, OP Polygon(Id_seg-departure int,Id_seg-arrival int): 

SET(int)  KEY { Id_poly } ;  
 

Notes: 
§ The operator Road allows finding all the possible roads between the cities identified 

respectively by Id_departure and id_arrival. This operator generates the set of segments, 
which form the parts of the road in question: SET (int )ß  Road (Id_departure: char (10), 
Id_arrival: char (10)). 

§ The operator Polygon allows building the domain of all the possible convex figures between 
segments, identified respectively by Id_seg-departure and id_seg-arrival. This operator 
returns a set of segments that form the convex space or the polygon in question: SET (int )ß 
Polygons (Id_seg-departure: int, Id_seg-arrival: int).  

§ The name of the operator Op represents the domain and TOp is the representation of the 
domain in the object/relational database. Indeed, in the case of the domain Polygons defined 
by the operator Polygon, Type TOp is equivalent to the type SET (int) and the values v are 
such as  v = Polygon (Id_seg-departure: int, Id_seg-arrival: int). For example, the polygon 
CEDA  in the figure 2 is defined by the tuple t as follows: t={<Id_poly, int, 200>, <Polygon, 
SET(int), {5,6,7}>}   /* see Figure 2. */ 

 
4.4. Basic operators of extended model 
 
The extended object/relational model requires new algebra for the support of the domains 
generated by operator Op. Indeed, in our approach, we have exploited the Date and Darwen’s 
studies on the A-algebra and previous work [7] on the operator bound by the procedures "EXT” to 
specify and define A*. This latter is based on same operators as A-algebra. 
 
Operator NOT*. The operator NOT* allows the elaboration of complement to the relation s 
relatively to another relation r.  

r*NOT s ; HrHs=  ; ))}trts()Brtr((tr/ts{Bs ≠∧∈∃=  
 
Operator REMOVE* . The operator REMOVE*  allows to remove, from the body Br, all the 
semantic entities derived from an operator Op. In case where the element to be removed is an 
attribute, REMOVE*  is equivalent to the operator REMOVE in A-algebra. 

XREMOVErs *← ;  where }))Op,A{X()HrT,X( =∧>∈<  

},{ ><−= TaHrHs  ; 
If X=a then begin  

},{ ><−= TXHrHs  ; 

}))},,{(),,()()((,/{ ><−=∧>∈<∧∈∧∈∃∃= vTXtrtstrvTXTvBrtrvtrtsBs  ; 
Endif Else( X=Op ) begin 

HrHs=  ; )trt:)t:p,..,2t:2p,1t:1p(X,T,X()Brtr((tr/ts{Bs 1n >∈<∧∈∃= +

}))})t:)t:p,..,2t:2p,1t:1p(X,T,X{trts( 1n ><−=∧ +  
endelse 

 
Operator TCLOSE. This operator allows the semantic imp rovement existing in the 
object/relational database. Indeed, the body  Br of a relation r is increased by new tuples 
expressing all information deduced by transitive closure. 

rTCLOSEr *←+  ; HrHr =+  ; 

))}(}),,,,,{()((,/{ BrtyTYxTXtBrSSséquencettupleBrBr ∈∧><><=⇒∈∀∪=+ With 



S. Nait Bahloul, Y. Amghar, & M. Sayah   85 

}y,T,Y,zn,T,X{};.;2z,T,Y,1z,T,X{};1z,T,Y,x,T,X{S ><><><><><><=   
Or }y,T,Y,zn,T,X{};.;2z,T,Y,1v,T,2Op{};1v,T,Y,v,T,1Op{S ><><><><><><=  
In this case the heading Hr of r contains the operators Ops, TCLOSE*  expresses a transitive 

closure between the operators or functions. 
 
Operator RENAME* .  In addition to renaming an atomic attribute this operator is used to 
change of the name of an operator Op. The heading Hs of s is identical to the heading Hr of r 
except the pair <O1p,TO1p> that is replaced by <O2p,TO2p>. The body Bs is formed by the set 
of tuples tr in Br where <O2p,TO2p,v2> replace all the triplets <O1p,TO1p,v1>. This operator 
can be written:  

)2Op,1Op(RENAME rs ← ; }2T,2Op{}}1T,1Op{Hr{Hs ><∪><−= . 
 
Notes: 
§ )COMPOSE*COMPOSE(and)OR*OR(),AND*AND( ≡≡≡ . 
§ Each operator of A* is followed by the character star (*) to mean that the operator belongs to 

the extended algebra. 
 

4.5 Extension operators  
 
The definition of an object/relational database contains relations having headings of 
type }TOp,Op,..,TOp,Opt,a,..,t,a,t,a{H mm11nn2211 ><>><<><><= . So, the interrogation 
and exploitation of such database require appropriate algebraic operators besides those used for an 
object/relational model. Several variants of the extension operator that we have proposed in [7] 
have been adapted and integrated into the specifications of A*-algebra . 
 
4.5.1. New type extension 
 
The operator of new type extension allows the modification of the heading of the relation r by 
inserting a new attribute an+1 and its type tn+1 in the heading Hr of r. The body Bs of s is such 
that Bs contains for each tuple tr of r, the triplet < an+1 , tn+1, null > where the constant ' null ' 
belongs to any system or user type. The operator in this case is equivalent to the operator ALTER 
in SQL3. 

)t:a(ADD r EXTs 1n1n ++← ; }t:a{HrHs 1n1n ><∪= ++  ; 

)}null,t,atrts(Brtr/ts{Bs 1n1n ><∪=∈∀= ++  

}t,a,...,t,a,t,a{HrbeingHr nn2211 ><><><=  ∀ i ∈ {1,…,cardinality(r) },  

∀ (tr ∈ Br) (tr ß tr ∪ <an+1,tn+1,null>) . 
 
Example of new type extension  
Points ß EXT Points ADD Color :int ;  Relation Points becomes: 
Points = RELATION Id_Point char(10), Abscissa real, Ordinate real,  Redius real,Color int} KEY 

{ Id_Point } ; with init(Points)  is defined by : init(Points) {for i=1 to card (Points) do 
Points.Color=null;}   

 
4.5.2.  Extension of computed type 
 
The extension of computed type operator allows on the one hand to modify the heading of the 
relation Hr by inserting the new attribute an+1 to Hr, and on the other hand to define the tuples 
results of Op application in r; the type of the attribute an+1 being defined by the type of 

)tn:pn,...,t:p,t:p(Op 2211 . The value v in the triplet >< + v,TOpa ,1n  is expressed by 

])p[],...,p([Opv n1= where  [pi]: is the value of pi. The expression of type extension is as 
follows: 

)tn:pn,...,2t:2p,1t:1p(OpBY1naADDrEXTs +←  where : 
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HrTOp,1anand}tn,an,...,2t,2a,1t,1a{Hr >∉+<><><><=  

}1tn,1an{HrHs >++<∪=  

}[pn])[p2],...,([p1],Opv(})v,1tn,1an{trts()Brtr((v,tr/ts{Bs =∧>++<∪=∧∈∃∀= . 
 
Example of extension of computed type   
Points ß EXT Points ADD Redius  BY calcul_redius(Abscissa:real, Ordinate:real): real;  
Relation Points  becomes  
Points = RELATION{Id_Point char(10), Abscissa real, Ordinate real,Redius real, KEY { 
Id_Point } ; with the operator calcul_redius defined by: calcul_redius(Abscissa:real, 
Ordinate:real): real 
begin 

Redius=sqrt (Sqr(Abscissa)+Sqr(Ordinate));  
Return (Redius) ; 

end 
 
4.5.3. Global operator extension 
A global operator extension acts on the heading Hr or the body Br of the relation r and allows 
defining new domains, new constraints of integrity defined by the operator Op or reorganizations 
of the relation r and generates as a result, a relation defined by 

}TOpL,OpL,...,1TOp,1Op,tn,an,..,2t,2a,1t,1a{Hs ><><><><><= . The operator ExtG can be 
i) internal if Op is specified when it is called; ii) external if Op is DBMS predefined operator.  

1tn:)tn:pn,....,2t:2p,1t:1p(OpBYrEXTs G +←  

[begin /* Body of Op which can be written in a high-level language or in SQL */ end.] 
Hs={<b1,t1>,<b2,t2>…,,<bm,tm>} with bi ∈  {ai,Op}, 

})}b,...,b,b{X},t,...,t,t{T/ts{Bs m21n21 ∈∃∈∃=  
)))}t:p,..,t:p(Opv(})v,T,X{ts()HsT,X(( 11=∧><=∧>∈<  

 
Case (a): for this type of extension, the operator Op allows to define a domain by the operator Op 
which is  integrated into the scheme of a given relation (i.e.: },{ ><∪= TOpOpHrHr , TOp is the Op 
result type ). Besides, the application of several operators to a scheme of a relation r allows to 
consider various complex types from r without changing its dimension.  
 
Example of domain of points in Square C  
Points1 ß EXT Points BY InSquare(Id_Point :int,C :Polygon) :Boolean ;  
Relation Points is: 
Points = RELATION{Id_Point char(10), Abscissa real, Ordinate real, Redius real, Color int,  OP 

InSquare(Id_Point :int,C :Polygon) :Boolean}  KEY { Id_Point } ; 
with InSquare (Id_Point,C) defined by : 
InSquare(Id_Point :int,C :Polygon) 
begin  if id_Point ∈ (square C) then return 1 else return 0 ; end 

 
Case (b): this type of extension uses aggregation, which allows restructuring the relation r. Let us; 
consider the case of a grouping of attributes  a1, a2. an in a new attribute b. Indeed, in the example 
below, the domain «AngleTeta» replaces the attributes «Abscissa» and «Ordinate» in the Relation 
Points. The dimension of the result relation s is inferior to the rank of the operand relation r: 
 

},,..,,,,{ 2211 ><><><= nn tatataHr  ; 

},,,,...,,,{ 2211 ><><>><<= TOpOptbtbtbHs mm  ; with m<n,  bj=a1…ap   and j=m , and p=n bj 
being an aggregation of several attributes ai 

 
 

                                                 
1 init (Points) is a procedure of initialization existing in the dbms 
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Example of restructuration of the relation Points  
Points ß EXTG Points BY AngleTeta(X:real,Y:real):real ;  
Points = RELATION{Id_Point char(10), Redius real,  Color int, OP 

AngleTeta(Abscissa:real,Ordinate:real): real}  KEY { Id_Point } ; 
AngleTeta(Abscissa:real, Ordinate:real) 
Begin for i=1 to card(operande relation) do { 

compute the angle Teta from Abscissa and Ordinate, 
remove the coordinates  Abscissa and Ordinate , 
insert tuple of the operand relation into Points; } 

end 
 

Case (c ): m>n and ai∈{b1…bm}; that case uses a redefinition of a user data type in its basic types 
[21,23]. 
 
Example: Redefinition of a domain D 
§ Let the relation Points defined by: Points(Id_Point char(10), Redius real,Color int, OP 

AngleTeta(Abscissa:real, Ordinate:real)); we have: TYPE Segment {begin: char(10) ,  end: 
char(10) } 

§ Points ß EXTG Points BY S :Segment; Relation Points becomes: Points = 
RELATION{Redius real,Color int, Id_Point char(10), S :Segment, OP 
AngleTeta(Abscissa:real, Ordinate:real)} KEY { Id_Point } ; 

§ Points ß EXTG Points BY  Display(s:Segment); Relation Points becomes : Points = 
RELATION{   Id_Point char(10), Redius real,Color int, S-Begin :char(10), S-End : char(10), 
OP AngleTeta(Abscissa:real, Ordinate:real), OP Display(s:Segment)} KEY { Id_Point }. 

 
4.5.4. Local operator extension 

 
Unlike the global operator extension, this type of extension acts exclusively on the body Br of a 
relation r and allows consequently expressing queries on tuples t or entities e having the 
characteristics Ci defined by an operator Op.  

s  ←  EXTL  ALL r BY Op(p1:t1,p2:t2,…,pn:tn):tn+1  
[begin /* Body of Op which can be written in a high-level language or in SQL */ end] 

}TOp,Op{HrHs ><∪= ; { }><∪=∈∀= )Op(Exp,TOp,Op{trts Brtr/tsBs ; where Exp (Op): 
the value, which defines the operator Op for a given query. TOp: specified by the expression Exp 
(Op). Figure 3 depicts extension operators. 

 
Example of local extension operator  
Neighbourhoods ß EXTL ALL Points  BY Near_of(P :char(10), d :real) :Set (int) ;  
 
Let us consider the relation Points of the data base ROAD_BASE*:  
 
Points = RELATION{ Id_Point char(10), Abscissa real, Ordinate real} KEY { Id_Point } ; 
 
So, neighbourhoods = RELATION{Id_Point char(10), Abscissa real, Ordinate real, OP 

Near_of(P: char(10), d : real) : Set (int) } KEY{ Id_Point }   
are declared by: 
VAR pp tuple(Id_Point char(10), Abscissa real, Ordinate real)  
  
/* Definition of the point A(6,12) */ pp.Id_Point =’A’; pp. Abscissa=6; pp. Ordinate=12 ;   
Neighbourhoods ß EXTL ALL Points BY Near_of(‘A’, 2)  
/* Points in a circle of centre A(6,12) and of Radius 2; see Figure 2. */ 
/* Exp(Op ) is defined in that case by Exp(Op) ={(x,y)/  (x-6)2+(y-12)2 =4} */ 
with Near_of(P :char(10), d:real) defined by: 
Near_of(P :char(10), d :real)   /* d: distance */ 
Begin   
Var E :set(int) ; Eß F ;  
for i=1 to count(Points) do Begin   
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read tuple(i) ;  
if  (P-tuple(i).id_point)<= d then tß tuple(i).Id_Point ;Eß  E ∪  {t};  
insert tuple(i) of the relation  Neighbourhoods ; endif 

endfor  
return (E)  ; 
end 

 
 
 

 

a1:t1   a2:t2        ….      ai : ti           an :tn       

  Hr 

b1:t1  b2 :t2  bm :tm      a2:t2     ai : ti    Opi :Topi   an :tn       

  Hr 

 
Global extension operator  ( case c ) 

 

 
 
 

 

a1:t1       a2:t2   ....    Opi :Topi     an :tn   an+1:tn+1 

  Hr1 

 
 
 

 
Extension Operator to the new type or calculated type 

 

a1:t1       a2:t2   ....      Opi  :Topi        an :tn       

  Hr1 

 

p1:t1       p2:t2     .....      pi : ti            p: t      
 

 HOpi

 
Global extension operator ( case a ) ;   

 

a2:t2    a4:t4        ….    Opi :Topi        an :tn       

  Hr1 

a1:t1       a3:t3     .....    pm:tm           p: t 
 

 HOp

 
Global extension operator  ( case b )  

  
 

Figure 3. Various types of extension to the operators Op . 
 
4.6. Advanced operators  
 
4.6.1 The operator of relation extraction 
 
The operator of relation extraction builds a relation from one or several operand relation r1, rp. 
Indeed, the operator Op applied to headings Hr(i) allows to define the result heading: 
Hs={<a1,t1>, <a2,t2>, …,<an,tn>, <Op1,Top1>, <OpL,TopL>};the operators Op1, …, OpL, in the 
relation result s, provide the possibility of the expression of new situations in the database. 
Moreover, the operator EXTRACT allows also the extraction of tuples tr by the operator Op 
(p1,p2...p) according to functional dependences linking the operand relations r1,..., rp: s ←   
EXTRACT r FROM r1,r2,…, rp BY Op(p1:t1, p2:t2, …,p : t) :tn+1; 

}TOp,Op,HrT,a,T,X{Hs iii ><∃>∈<∃><∀= with <Xi,Ti>=<a,T> ∨   <Xi,Ti>=<Op,Top>.  

})Hs with compliant ts()trts((Hrtr/ts{Bs
n

1i

i ∧⊂∈∃=
=
U with Hr (i), the heading of the 

relation r(i) and (i=1..n). The operator Op allows to extract entities of type tn+1, according to the 
heading Hr of the operand relation r, from the relations r(1), r(2),…, r(n). The attributes  <Xi, Ti> 
of the result relation s are either attributes already existing in the values relations’ r(i) or attributes 
<Op,TOp> generated by the operator Op.  

 
Extraction of a relation by operator OP     
Let us consider Points and Neighbourhoods two relations (4.5.3 (a))  and (4.5.4): 
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Points = RELATION{Id_Point char(10),  Abscissa real,  Ordinate real, Redius real, Color int, OP 
InSquare(Id_Point :int,C :Polygon) :Boolean }  KEY { Id_Point } ; 

Neighbourhoods = RELATION{Id_Point char(10), Abscissa real, Ordinate real, OP Near_of(P: 
char(10), d :real) :Set (int) } KEY { Id_Point } ; 

 
Now, let  the following query: EXTRACT  s  FROM Points, Neighbourhoods By P_and_N(void)   
with:  P_and_N(void) Begin  Points AND Neighbourhoods  End 
S = RELATION{Id_Point char(10), Abscissa real, Ordinate real, Redius real,Color int,  

OP InSquare(Id_Point :int,C :Polygon) :Boolean OP Near_of(P :char(10), v :real) :Set (int)}  
KEY { Id_Point } ; which are points in the square C defined by the inequalities 
Cs{0<x<a,0<y<a} 

EXTRACT Q FROM S BY Squaree(Cs) :Set (int) ; with Square (Cs) defined by:  
Square(Cs  :set(int))  

for i=1 to card(relation Points) do begin 
Read tuple(i) ; Tß tuple(i).Id_Point ; If (InSquare(T,Cs) then Bs  ß tuple(i); end 

 
4.6.2. Abstract data type generation 
 
In an object/relational model the definition of the relation notion as a heading Hr and a body Br in 
the Date and Darwen’s formalism [1, 2] has allowed to approach the relation notion like the 
domain set Hr={<a1, T1>, <a2, T2>, <an, Tn>} where the management of the body Br of the 
relation does not influence the heading calculation. The integration of Operators Op in the 
definition of an extended object/relational model expresses each heading Hr of a relation r with 
an abstract data type Hadt={<A1, T1>, <Om, TOm>, <An, Tn>} . The generation operator of 
types SHOW (a) expresses all the abstract data types in the heading Hr = {< a1, T1 >, < Op, TOp 
>, < Om, Tom >, < an, Tn >} following the nature of operator Op and its  input parameters. Once 
the abstract data type or ADT has been generated, it is possible to extract SHOW  (b), all the 
instances respecting the signature of such type or domain.  
 
(a): ): s ← SHOW[ALL] ADT [<ADT_name> ] ON r WHERE <conditions>  with <conditions> 
an expression on the heading Hs and can be a definition by value or by variable parameters of the 
operator Op (p1:t1, p: t) 

))}TrueConditions()HsTOp,Op(()HrT,X(,HrTOp,Op/T,X{Hs iiii >≡<∧>∈<⇒>∈<>∈<∃><=

}))Hs with compliant ts()trts((Hrtr/ts{Bs ∧⊂∈∃=  
 
(b): s ← SHOW[ALL] [<instance_name>] INSTANCE ON <ADT_name> WHERE <conditions> 

}name_ADTHT,X/T,X{name_ADTHHs ><>∈<∃><>≡<= ))}TOpT()OpX(( =∧=  

)}TrueConditions()Hswith compliantts/((ts{Bs >≡<∧=  with <Conditions> an 
expression on the body Bs. 
 
Let be the relation Neighbourhoods in  the section (4.4.4) :  
Neighbourhoods = RELATION{ Id_Point char(10), Abscissa real, Ordinate real,  

OP Near_of(P :char(10), v :real) :Set (int) } KEY { Id_Point } ; 
SHOW ADT N_Proches  ON Neighbourhoods /* Query SHOW without conditions. The following 
query expresses all the abstract data types defining, possible Neighborhood. */ 
 
5. Extended relational algebra language (ERA*)  
 
ERA* is an algebraic language based on the operators of A*-algebra. Indeed, realization of the 
algebraic extension operators offers new functionalities in a database language. The definition of 
relation r and data logical calculation proposed in the Dates and Darwen’s formalism on the 
object/relational models [1,2] leads: 
 
- to enrich the object/relational model seen by Melton on the one hand;  
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- the reinforcement of data interrogation language by sophisticated operators for the resolution 
of some query classes on the other hand.  
 
Consequently, the integration of possibilities offered by the language ERA* in SQL3 should 

improve this standard. To illustrate partially ERA*, let us consider the database ROAD_BASE* 
defined in section 4.3 and the set of queries of the illustrative example of the section 2. Our 
objective in the following is summarized in the presentation of the solutions of some types of 
queries by using both SQL3 and ERA*. 

 
5.1 Geometrical queries  
 

(1) What are the respective coordinates of the cities A and C? 
(2) What is the distance between the cities A and E? 
(3) What are the cities belonging to the zone z defined with the rectangle {1<x<20;2<y<7}?  
(4) And the cities not belonging to the zone z? 
 
Query SQL3 ERA* 

(1) Select Abscissa,Ordinate From  Points 
Where (Points.Id_Point=’A’) OR 
(Points.Id_Point=’C’) 
 

Ext ALL Points BY 
InTown(Id_Point:int,{A,C}):Boolean; 
Points REMOVE* Id_Point; 
SHOW ALL INSTANCE ON Points; 

(2) Select Distance(P1,P2) 
From   Points P1, Points P2 
Where P1.Id_Point=’A’ AND 
P2.Id_Point=’E’ 

Ext Points BY Eval_dist(Departure:char(10), 
Arrival:char(10)):real,  
SHOW ADT ON Points  
Where Eval_dist(x,y) AND x=’A’ AND y=’E’; 

 
(3) 

Select P1.Id_Point 
From Points P1 

Where (1<P1.Abscissa<20) AND 
(2<P1.Ordinate<7) 

(3.1) : Res = Extract Point_in_zone 
                 From Points By       
                inzone(p:char(10),S):boolean ;  
(3.2) : Res = Res Remove* Abscissa, Ordinate ; 
ShowAll ADT On Res Where true; 

 
(4) 

Select P1.Id_Point 
From Points P1 
Where  Not inzone(P1.Abscissa, 
P1.Ordinate); 

 
(ShowAll ADT On Res(*)  
Where  Not inzone(p:char(10), S):boolean; 

 
Notes .  
§ In the case of simple questions, answers in ERA* are less condensed and more complex to be 

expressed with regard to the language SQL3. 
§ The operator InTown(Id_Point:int ,s:set):Boolean allows to identify whether the city Id_Point 

belongs to the set of cities s  
§ Eval_dist(Departure:char(10), Arrival:char(10)) expresses the distance between an arrival 

city and a departure one. 
§ Distance (P1 , P2) is a stored procedure or PSM [14] in the language SQL3. 
§ In addition tgo query resolution, the solution to the query (1) in language ERA*,  allows to 

enrich the relation Points by the operator InTown below.  
 Points=RELATION{Id_Point:int,Abscissa:int,Ordinate:int,  
       OP InTown(Id_Point:int,{A,C}):Boolean } KEY{ Id_Point } 
§ The operator InTown is necessary in other queries which make reference to any subset { A, C} 

like : What are the roads containing the cities A and C ?  
§ The S system represents the zone Z of the figure 2 where S={1< x <20 and 2<y<7}.  
§ The signature of operator inzone(p :char(10),S :char(10)) :boolean, S :char(10) :boolean ; 

express the following two propositions (p∈ S) and (p ∉ S) depending on returned value. 
 
Treatment of the query ( 3 ) 
 
(3.1) :Res=RELATION{Id_Point:int,Abscissa:int, Ordinate:int,OP inzone (C:char(10) ,S: 
char(10)): boolean } KEY{ Id_Point } 
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(3.2) : Res=RELATION{ Id_Point:int, OP inzone(C:char(10),S:char(10)):boolean } KEY{ 
Id_Point }. The body B_Res of the relation Res above is: B_Res = {{<Id_Point, char(10),C>, 
<inzone,1>}, {<Id_Point, char(10),E>, <inzone,2>}}; 
The result B_Res extension is {(“C”,1),(“E”,2)} 
 
5.2. Topological Queries  
 
What is the transitive closure of the road set in zone Z does not intersect with points ofine Y=3? 
What is  the nature of the possible polygons?  The steps of resolution of query ( 5 ), in the example 
depicted in Figure 4, are : 
 

a. Searching for roads in zone Z  
b. Determination of roads not 

passing via the point E 
c. Determination of the 

transitive closure  
d. Deduction of polygons 

 

 
Zone Z 

P1 

P2 
Line Y=3 
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X 

Y 

A 

C 
E 

D 

3 18 

3 

12 

 
 

Figure 4. Topological situations. 
 
Indeed, roads in the zone Z (figure belo w) are defined by the set S such that : 
S={{P1,C},{P1,P2},{P1,C,E},{P1,P2,E},{C,E},{C,E,P2},{P1,C,E,P2},{E,P2}} ; (a) 
So roads do not pass via points of the line Y=3 represent the set SS such that: 
SS={{P1,C},{P1,P2}}  (see figure above );                      (b)  
so the transitive closure  SS* is: SS*=SS ∪  {P2,C}={{P1,C},{P1,P2},{P2,C}} ;  (c) 
We have deduced that there is only one polygon (P1P2C) of type triangle      (d) 

 
However, in the general case the resolution of query ( 5 ) has some particularities: 

(1) The possibility of defining and extracting new domains from the concrete database already 
defined; 

(2) The definition of infinite objects but logically finite 
(3) The definition of non-specified property a priori in the scheme of the object/relational 

databas e (eg road length, the nearest road to a zone). 
 
This highlights the choice of a database definition and interrogation language which can: 

• generate types of complex data such as the set collections or the sets  and their managements; 
• express complex algorithms for the detection of the intersection points of roads or zones  
• do the data logical computation to deal with the road network evolution in its topological 

aspect  
• define a great number of possible situations for the road network management. etc… 

 
Consequently and following the limits of stored procedures which are provided in  the module 

SQL / PSM [14], it is important on the one hand to reinforce the object/relational model defined 
in [1,2] by the operators Op (p1:t1 , p2:t2, pn tn) which can express complex situations under the 
form of general algorithms and on the other hand to allow a relational computation in data domain 
in the case of complex queries. 
 
6. Discussion 
 

The DBMS based on relational model is widely used today. This is essentially due to the 
integration of a query language based on the relational algebra [5] which has undergone several 
extensions to improve the relational model. Thus, new algebras are defined to meet the 
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requirements of advanced databases for designers and users. In addition to the basic operations 
(i.e.: Union, Difference, Cartesian product, Projection, Restriction, Join), these algebras, 
qualified as extended algebra, group other derived operations (i.e.: Intersection, Division, 
Complement, Unflat, External Join, Transitive closure, extension or others). Consequently, our 
object/relational A*-algebra consists of relational operators based on the logic of first order and 
algebraic extension operators . A* is composed of both operators called relational expressed in first 
order logic and algebraic extension operators. In fact, a study of A* completeness and 
consequently the elaboration of any language based on A* (i.e.: ERA* Language) depends on the 
object/relational queries space to be expressed. From a purely relational point of view, A* is 
complete in the sense where it offers the possibility of expressing any relational query (see 
comparison in the Table1.). For an object or object/relational context, even A* completeness was 
one of our main preoccupations the query language based on A* (ERA*) should be more 
investigated. In fact, the expression of any object/relational query requires an object/relational 
query language being able to contain and implement program. The first elements of this language 
presented in this paper can be considered as a plat-form for the kernel of a strong and powerful 
query language to manipulate logically (or) symbolically complex objects. In an object/relational 
database scheme, a relation r of the heading H and body B is defined by: 

}T,a,...,TOp,Op,T,a{H nn11 ><><><=  with Op(x1,x2,…,xn):y   and B={t/t is compliant with H; with 
t={a1,T1,v1>,<Op,Top,Op (p1:t1, p2:t2, …, pq:tq): tn+1>,…,<an,Tn,vn>}; the relation r, in that 
case, can be considered as a functional structure implying a part of the heading H with the rest of 
the heading H. The subset of attributes in H that determines the rest of the heading is called a key 
of the relation r. In the case of a functional dependence a1,a2,…,an-1 → an   of the relation r 
expresses a function f(a1,a2,…,an-1) = an. To show the interest of A* we compare basic operators 
of A* with relational algebra while the extension operators of A* are compared on the one hand to 
the specification language of object scheme, ODL [6] and to the object/relational language SQL3 
on the other hand. 

 
Basic operators in A*. Compared to the Codd's relational algebra, A*-algebra  contains five basic 
operators and two derived operators. We give in Table 1 the algorithmic structure to translate A* 
into relational algebra. The set of basic operators of A* contains operators based on the first order 
logic (e.g. : And *, Or*, Not*) besides an operator of deletion remove* and other one to rename 
the attributes rename*. This last operator requires a boring calculation in the case of an extended 
object relational model. Indeed, the change of the name of an operator Op implies the calculation 
of all the tuples of which the operator Op makes reference. The derived operators Tclose*  and 
Compose* are based on the composition and transitive closure operations, defined by Codd. We 
notice that the A* operators are a more simply way to express queries that necessitate many Codd 
relational operators (see Table1).  
 
Extensions operators in A*. The extension operators of the object/relational scheme are 
classified into three categories: i) extensions to new type, ii) extensions to operators (global or 
local) and iii) extension to extraction operators and/or data type generation. The extension 
operators defined in the section 4.5 are compared in Table 2 (a & b) with those of the language 
ODL (e.g., standard object scheme specification) and those of SQL3 (e.g., standard language for 
object/relational database).  
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A* operators Expression basing on relational algebra 
a) Basic operators 
REMOVE* If (∀ i ∈ {p+1,..,n}, ai is a basic type or an user type different from the type OP) 

Then )(,...,1 rapaΠ Else (∃ i ∈ {p+1,..,n}, ai is of type Operator);   

      1. ∀ j ∈ {p+1,..,n} / aj is an operator Op do (remove*  OP);  
      2. )(,...,1 rapaΠ ;   

endElse 
AND* If (∀ i ∈ {p+1,..,n}, ai is a basic type or an user type different from the type OP ) 

Then If ((Hr∩Hs) ≠ ∅)  Then (r And* s)=(r X s)   
          Else ((r And* s) remove* (a1,…,ap)=(r natural join s)  
Else (∃ i ∈ {p+1,..,n}, ai is of type Operator);      
         ∀ j ∈ {p+1,..,n} / aj is an operator do ∪ Op; (r And* s)=(r X s) giving res; 
         res=res union ( The operators Op) ; res=res remove* a1,…,ap; 
endElse 

OR* If (∀ i ∈ {p+1,..,n}, ai is a basic type or an user type different from the type OP ) 
Then  If (Hr=Hs) Then (r Or* s)=(r union s)   
          Else ((r Or* s) ≡((r union s) remove* (a1,…,ap) 
Else (∃ i ∈ {p+1,..,n}, ai is of type Operator);     
         ∀ j ∈ {p+1,..,n} / aj is an operator Op do ∪ Op; (r Or* s)=(r union s)=res; 
         res=res union ( The operators Op) ; res=res remove* (a1,…,ap); 
 endElse 

NOT*  If (Hr=Hs) Then (r - s)=(r And *(Not*(s))) ; 
RENAME* Null 
(b) Derived Operators   
r Compose* s If (∀ i ∈ {p+1,..,n}, ai is a basic type or an user type different from the type OP )  

Then  If ((Hr∩Hs)≠ ∅) Then (r Compose* s)=(r x s) ;   
          Else (r Compose* s)=((r And* s) remove* a1,…,ap);  
Else(∃ i ∈ {p+1,..,n}, ai is of operator type);     begin 
        ∀ j ∈ {p+1,..,n} / aj is of operator Op do ∪ Op; (r compose* s)=(r x s)=res; 
            res=res union ( The operators Op) ; res=res remove* (a1,…,ap); 
 endElse 

Tclose* (r) If (∃ai∈ Hr,∃aj∈ Hr / (ti=tj)) Then  r+=Tclose*(r) ;  r+=r+ union { Operators } ;    
Table 1. A* versus relational Algebra. 

 
A* Extension Operators Object / Relational DBMS ( SQL3) 

(1) EXT r ADD(an : tn+1)  BY 
Op(P1,:t1,p2:t2, … ) : tn+1 

§ Add attribute an+1 of type tn+1 in the mapping  of r 
§ Add values [ An+1] such as: [An+1]=Op([p1],…,[pn]). Query SQL3 : 
Alter Table  Br add an+1 ; 
Update  Br  set Br.an+1= Op([p1],…,[pn]); 

(2) EXT r ADD(an : tn+1) 
 

§ Add attribute an+by assigning values determined as Null to [an+1]. 
Alter  Table  Br add an+1 ; 
Update  Br  set Br.an+1=null; 
§ The above query acts on the relation body Br and not on the heading Hr of 

the relation r. Then, any necessary treatment for the logical manipulation of 
the relation r is not possible.   

(3)  EXT r BY  
Op(P1,:t1,p2:t2, … ) : tn+1 
[begin   <Op_body> end] 

Not possible with SQL. The only possibility is to create trigger associated to a 
new column, acting during updating of column. 
1. Alter  Table  Br add an+1 ; 
2. Create  Trigger Trig_op on Br for an+1 /*implements statement Ext r  */ 

(4) EXT ALL  r BY 
Op(P1,:t1,p2:t2, … ) : tn+1 
[begin   <Op_body>  end.] 

1. Alter Table  Br ADD (Op tn+1);  
2. Create Function  Op(p1 t1,p2 t2,…, p t)  Return tn+1 is   
       begin <Op_body> end; 
3. Update  Br set Br.Op= Op(p1 IN t1,…, p IN t) 

(5) EXTRACT r  
FROM (r1, r2, …, rp) 
BY Op(p1:t1,p2:t2,…) 

operator not exist in SQL3. So, it should be interesting to integrate this 
possibility into SQL3 : Create a relation r, from relations r1,r2,…,rp, by using  
the operator Op. A such statement could be: 
create relation r by Op(p1 IN t1,p2 IN t2,…, p IN t) is (a1:T1,a2:T2,…,an:Tn); 

(6.a) SHOW [ALL] ADT 
[ADT_name> ON r  
WHERE <conditions> 

This generation operator of the data abstract types is not available on SQL3 
because it concerns the relation headings in the object/relational model. 

(6.b) SHOW[ALL]  
INSTANCE ON 
<ADT_name>  
WHERE <conditions> 

§ This object generation operator is not available on SQL3 because it 
concerns relations generated from abstract data types or ADTs. 

Table 2a. A* versus query language SQL3. 
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A* Extension Operators Object DBMS (ODMG ODL ) 
(1) EXT r ADD(an : tn+1)  BY 
Op(P1,:t1,p2:t2, … ) : tn+1 

 interface Hext :Hr  
(extent Bext) 
 { attribute tn+1 an+1;  void init (tn+1 an+1);} ;  
 void init (tn+1 an+1)  
{ Select  e.an+1  From e  in Bext  set_value(Op(p1:t1,p2:t2,..,p:t): an+1) }; 
/* Keywords in bold correspond to ODL and OQL languages of the ODMG 
system.. The inheritance exploitation (ie: Hext Hr) allows to carry out this 
algebraic extension. It is important to note that the computed type extension 
operator is integrated into the ODBMS according to the programming 
language chosen for object interface specification. Consequently, the 
realization of such an operator is limited by the weaknesses of object models 
concerning the data interrogation language  */ 

(2) EXT r ADD(an : tn+1) 
 

Variant of the operator (1), this operator allows to extend a type defined by a 
heading H. Indeed, Hext extension of the heading Hr is defined by : 
 interface Hext :Hr  
(extent Bext)  { attribute tn+1 an+1;   void init (tn+1 an+1);} ;  
void init (tn+1 an+1)  
{ Select  e.an+1 From e  in Bext  set_value(nil:an+1)}; 

(3)  EXT r BY  
Op(P1,:t1,p2:t2, … ) : tn+1 
[begin   <Op_body> end] 

§ interface Hext :Hr  
  (extent Bext) { attribute tn+1 Op; tn+1 Op(p1:t1,p2:t2,…,p:t) ; [begin  
<Op_body>     end.]} 
The nature of Op determines the nature of the extension EXT.Op applied to 
the Hext domain allows either to specialize the latter (section 4.5.3 a) or to 
redefine it by grouping types included in Hext (section 4.5.3 b) or unflat the 
type Hext into its elements or basic domains (section 4.5.3 ( c) ). We note in 
that case that the scheme manipulations are not possible in the object model 
OMG. Still, the effective manipulation of objects as domains or types requires 
a conception of objects on the basis of the set theory. Propositions (1, 2 and 3 
), quoted above, allow to preserve the relational concepts by integrating the 
operator notion.  

(4) EXT ALL  r BY 
Op(P1,:t1,p2:t2, … ) : tn+1 
[begin   <Op_body>  end.] 

§ Unlike the operator Op in the extension (3) above, the operator Op in that 
case acts exclusively on the body Bext of the relation r such as : 
 inter face Hext :Hr  (extent Bext) { 
attribute tn+1 Op; tn+1 Op(p1:t1,p2:t2,…,p:t) ; 
[begin   <Op_body>    end.]}  

(5) EXTRACT r  
FROM (r1, r2, …, rp) 
BY Op(p1:t1,p2:t2,…) 

§ interface Hr :Hr1,Hr2,…,Hrp  
  (extent Br) { [begin   <Op_body>                    end.]} 
The operator Op extracts the object Hr from many objects  Hr1,Hr2,…Hrp. 

(6.a) SHOW [ALL] ADT 
[ADT_name> ON r  
WHERE <conditions> 

§ This operator does not exist in the ODL, because it allows a computation 
on the database scheme and its evolution (see section 4.4.6 (a)). 

(6.b) SHOW[ALL]  
INSTANCE ON 
<ADT_name>  
WHERE <conditions> 

§ For all x in B<name_ADT>:x.<Conditions>=True 
The variable x represents instances corresponding to a given heading H < 
ADT_name >. Structure For all.. In ; is adopted according to the language 
ODL of the ODM (see section 4.4.6 (b)). 

Table 2 b. A* versus object description language (SQL3). 
 

7. Conclusion 
 
The object/relational model extension proposed in this paper, with the operators Op (p1:t1 , p2:t2, 
pn tn)  is inspired by Darwen and Date's formalism. The definition of any relation r according to 
the form <Hr,Br> where Hr is a heading and Br is the body of r, has allowed operating 
independently on the scheme of object/relational data base from concrete relations. We have 
shown the interest of such an extension of algebraic operators, comparing to stored procedures or 
PSM [14], for application domains in which data representation necessitates complex types. The 
definition of a fragment of language ERA* to exploit geometrical and topological data in a road 
network, has shown its importance. This language can be considered as a new possibility of 
SQL3, a functionality dealing with the complex algorithms of computation, modeling and 
querying for new applications. Indeed, on the one hand, the operator OP in the definition 
Hs={<a1,t1>,<an tn>,<OP1,TOP>}  is useful in the enhancement of object/relational database 
scheme and on the other hand, the extended algebraic operators permits to further improve the 
data querying language. Consequently, the undertaking of a prototype ORDBMS and its 
integration within RDBMSs will allow developers to deal with new queries in database. 

 



S. Nait Bahloul, Y. Amghar, & M. Sayah   95 

8. References 
 
[1]  H.Darwen and C.J.Date. Foundation for Object/Relational Database: The third manifesto. 

Addison Wesley, 1998. 
[2]  C.J Date, Hugh Darwen, Foundation for Future Database Systems: The Third Manifesto , 

Hardcover, Pearson Education 2000. 
[3]  P.Seshadri. Enhanced abstract data types in object-relational databases.  The VLDB 

Journal, 7(3): 130-140, 1998. 
[4]  M. Stonebraker, P.Brown. Object-relational DBMSs: Tracking the Next Great Wave. 2e, 

Morgan Kaufmann, 1999. 
[5]   E.F.Codd. A relational data model for large shared databanks. Communications of the 

ACM, 13(6): 377-387, 1970. 
[6]   R.G.G.Cattel. The Object data standard ODMG 3.0 , Morgan Kaufmann, 2000. 
[7]   Nguyen bahao, Nait bahloul safia, A.E. Harmanci and E.Gelenbe(Eds), Sophistical queries to 

relational and object oriented databases; Proc. of  ISCIS, pp 687-695; Turkey 1990. 
[8]  M.P. Atkinson, et al. The OODBS manifesto. DOOD, page73-94, 1989. 
[9]  H.Darwen, C.J.Date. The third manifesto. SIGMOD Record, 24(1):39-49, 1995. 
[10] W.Kim. Modern database systems. The Object Model, Interoperability, and Beyond. 

Addition-Wesley, pages 238-254, 1995.                  
[11] G. Lausen and G.Vossen. Models and language of object-relational databases. Addition-

Wesley, 1997. 
[12]  W.Kim. Object-oriented database system: Promises, reality and future. VLDB Conference, 

pp 676-687, 1993. 
[13]  W.Kim. A model of queries for object-oriented database. VLDB Conf., pp 423-432, 1989 
[14]  J. Melton. Understanding SQL’s Stored Procedures.  Morgan Kaufmann Publisher 1998. 
[15] L.Libkin and L.Wong. Query language for bags and aggregate function. Journal of 

Computer and System Sciences, 55(2):241-272, 1997. 
[16] G. Ozsoyoglu, Z.M.Ozsoyoglu, V.Matos. Extending relational algebra and relational 

calculus with set-valued attributes and aggregate functions.ACM TODS,12(4) , 1987.  
[17] B.Jaeschke, H.J.Schek. Remarks on the algebra  of non first normal form. PODS, pp124-138, 

1982.  
[18] H.J.Schek, M.H.Sholl. The relational valued-attributes. IS, 11(2):137-147, 1986. 
[19] L.S.Colby. A recursive algebra for nested relations. IS, 15(5):567-582, 1990. 
[20] M.A.Roth, J.E.Kirkpatrick. Algebras for nested relations. Data Engineering, 11(3):39-47, 

1988.   
[21] H.F.Korth, M.K.Roth. Query languages for nested relational databases. In Nested Relations 

and Complex Objects in Databases. LNCS 361, pp 190-204, 1989. 
[22] M.Levene, G.Loizou. The nested universal relation data model. Journal of Computer and 

System Sciences, 49(3):683-717, 1994. 
[23] M.Gyssens, D.Van Gucht. A comparison between algebraic query languages for flat and 

nested databases. Theorical Computer Science, 87(2): 263-286, 1991. 
[24] S.Abiteboul, C.Berri. The power of languages for the manipulation of complex values. The 

VLDB Journal, 4(4):727-794, 1995. 
 [25] R.Hull. A survey of theoretical research on typed complex database objects. J.Pareadens, 

Ed, Academic Press, pp 193-256, 1987. 
[26] J.Van Den Bussche, J.Paredaens. The expressive power of complex values in object-based 

data models. Information and Computation, 120(2):220-236, 1995. 
[27] F.Bancilhon and S.Khoshafian. A calculus for complex objects. PODS, pp 53-59, 1986. 
[28] T.Leung, et al. The AQUA data model and algebra . DBPL, pages  157-175, 1993. 
[29]  S.Cluet, G.Moerkotte. Nested queries in object  bases. DBPL, pp 226-242, 1993. 
[30]  D. Gross-Amblard. Approximation dans les bases de données contraintes Ph.D.Thèse 2000. 


